INTRODUCTION

1. The Department of Toxic Substances Control (DTSC) and Ecology Control Industries (Respondent) enter into this Corrective Action Consent Agreement (Consent Agreement) and agree as follows:

1.1. Jurisdiction exists pursuant to Health and Safety Code section 25187, which authorizes DTSC to issue an order to require corrective action when DTSC determines that there is or has been a release of hazardous waste or hazardous waste constituents into the environment from a hazardous waste facility.

1.2. The parties enter into this Consent Agreement to avoid the expense of litigation and to carry out promptly the corrective action described below.

1.3. Respondent is the owner and operator of a hazardous waste facility located at 255 Parr Boulevard, Richmond, California 94801 ("the Facility").

1.5. The terms used in this Consent Agreement are as defined in California Code of Regulations, title 22, section 66260.10, except as otherwise provided.
1.6. Respondent agrees to implement all DTSC-approved workplans and to undertake all actions required by the terms and conditions of this Consent Agreement, including any portions of this Consent Agreement incorporated by reference.

1.7. Respondent waives any right to request a hearing on this Consent Agreement pursuant to Health and Safety Code section 25187.

FINDINGS OF FACT

2.1. During a site visit conducted on January 13, 2005, DTSC staff expressed concern at the condition of the Tank Staging Pad. These concerns were outlined in Notice of Deficiency (NOD) No. 6, conveyed to the Respondent in a letter dated February 8, 2005.

2.2. NOD No. 6 required the Respondent to design and construct a new conforming secondary containment system in the location of the Tank Staging Pad. The Respondent was also required to submit a plan for testing to determine whether the facility was contaminated.

2.3. On April 13, 2005 the Respondent submitted a work plan titled ‘Revised Work Plan for Initial Assessment of Soil Quality in the Tank Pad Vicinity’. The work plan was reviewed by DTSC and subsequently approved on April 20, 2005.

2.4. Soil sampling activities were conducted on April 29, 2005 and the results of the sampling were submitted to DTSC in a report titled ‘Initial Assessment of Soil Quality in the Tank Pad Vicinity’ and dated May, 2005. Total Reduced Petroleum Hydrocarbons (TRPH) concentrations were detected in 15 of the 20 samples analyzed. Based on the findings of the report DTSC has determined that there has been a release of hazardous constituents at the Facility.

2.5. DTSC sent a letter to the Respondent dated July 27, 2005 requiring the Respondent to conduct follow up testing in order to fully characterize the extent of the contamination. In response to this request the Respondent submitted a ‘Work Plan Addendum for Further Assessment of Groundwater Quality’ dated August 9, 2005. This workplan was reviewed by the Geological Services Unit (GSU) and comments were provided in a memorandum dated September 27, 2005. The memorandum was conveyed to the Respondent in a letter dated September 29, 2005.

2.6. The Respondent submitted a ‘Revised Work Plan Addendum for Further Assessment of Groundwater Quality’ dated March 23, 2006. This workplan was reviewed by the GSU and comments were provided in a memorandum dated April 19, 2006. The memorandum was conveyed to the Respondent in a letter dated April 21, 2006.

2.7. A ‘Revised Work Plan Addendum for Further Assessment of Groundwater Quality’ was submitted by the Respondent on July 25, 2006. The revised work plan was
reviewed by the GSU and found to be conditionally complete in a memorandum dated August 14, 2006. This finding has not previously been conveyed to the Respondent.

2.8. The hazardous waste and hazardous waste constituents of concern at the Facility are: gasoline, oil, and diesel; hazardous constituents include: total petroleum hydrocarbons – gasoline (TPHg), TPH – diesel (TPHd), TPH – oil (TPHo), volatile organic compounds (VOCs), benzene, toluene, ethyl benzene and xylenes (BTEX), semi-volatile organic compounds (SVOCs), polynuclear aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs).

2.9. Based on preliminary testing the Department has determined that there is or has been a release of hazardous wastes or hazardous waste constituents from the Facility into the environment. Additional testing will be performed to determine the degree and nature of any release. Respondent does not admit to this finding.

2.10. The Facility occupies the Northwest portion of a nine-acre industrial parcel in Contra Costa County, approximately one mile from the San Pablo Bay, at Latitude 37 degrees 58' 09.1", longitude 122 degrees 22' 03.1". The surrounding land uses include industrial and residential properties. The site is bordered on the North by a commercial nursery. On the East side of the property are two residences. On the West border there is a trailer manufacturing facility. The South side of the site is bordered by Parr Boulevard. Across the street from Parr Boulevard is an industrial office park. The entire Facility is surrounded by a chain link fence. Access and egress are limited to gates located on Parr Boulevard. The tank processing pads are located approximately 50 feet from the western fence line.

PROJECT COORDINATOR

3. Within 14 days of the effective date of this Consent Agreement, DTSC and Respondent shall each designate a Project Coordinator and shall notify each other in writing of the Project Coordinator selected. Each Project Coordinator shall be responsible for overseeing the implementation of this Consent Agreement and for designating a person to act in his/her absence. All communications between Respondent and DTSC, and all documents, report approvals, and other correspondence concerning the activities performed pursuant to this Consent Agreement shall be directed through the Project Coordinators. Each party may change its Project Coordinator with at least seven days prior written notice.

WORK TO BE PERFORMED

4. Respondent agrees to perform the work required by this Consent Agreement in accordance with the applicable state law, its implementing regulations, and the applicable DTSC guidance documents.
INTERIM MEASURES (IM)

5.1. Respondent shall evaluate available data and assess the need for interim measures in addition to those specifically required by this Consent Agreement. Interim measures shall be used whenever possible to control or abate immediate threats to human health and/or the environment, and to prevent and/or minimize the spread of contaminants while long-term corrective action alternatives are being evaluated.

5.2. If at any time Respondent identifies an immediate or potential threat to human health and/or the environment, discovers new releases of hazardous waste and/or hazardous waste constituents, or discovers new solid waste management units not previously identified, Respondent shall notify DTSC Project Coordinator orally within 48 hours of discovery and notify DTSC in writing within 10 days of discovery summarizing the findings, including the immediacy and magnitude of the potential threat to human health and/or the environment. Within 60 days of receiving DTSC's written request, Respondent shall submit to DTSC an IM Workplan for approval. The IM Workplan shall include a schedule for submitting to DTSC an IM Operation and Maintenance Plan and IM Plans and Specifications. The IM Workplan, IM Operation and Maintenance Plan, and IM Plans and Specifications shall be developed in a manner consistent with the Scope of Work for Interim Measures Implementation contained in as Attachment B. If DTSC determines that immediate action is required, DTSC Project Coordinator may orally authorize the Respondent to act prior to DTSC's receipt of the IM Workplan.

5.3. If DTSC identifies an immediate or potential threat to human health and/or the environment, discovers new releases of hazardous waste and/or hazardous waste constituents, or discovers new solid waste management units not previously identified, DTSC will notify Respondent in writing. Within 60 days of receiving DTSC’s written notification, Respondent shall submit to DTSC for approval an IM Workplan that identifies Interim Measures that will mitigate the threat. The IM Workplan shall include a schedule for submitting to DTSC an IM Operation and Maintenance Plan and IM Plans and Specifications. The IM Workplan, IM Operation and Maintenance Plan, and IM Plans and Specifications shall be developed in a manner consistent with the Scope of Work for Interim Measures Implementation contained in as Attachment B. If DTSC determines that immediate action is required, DTSC Project Coordinator may orally authorize Respondent to act prior to receipt of the IM Workplan.

5.4. All IM Workplans shall ensure that the Interim Measures are designed to mitigate current or potential threats to human health and/or the environment, and should, to the extent practicable, be consistent with the objectives of, and contribute to the performance of, any remedy which may be required at the Facility.

5.5. Concurrent with the submission of an IM Workplan, Respondent shall submit to DTSC a Health and Safety Plan in accordance with the Scope of Work for a Health and Safety Plan contained in Attachment C.
6.1. Within 30 days of the effective date of this Consent Agreement, Respondent shall submit to DTSC a Workplan for a RCRA Facility Investigation ("RFI Workplan"). The RFI Workplan is subject to approval by DTSC and shall be developed in a manner consistent with the Scope of Work for a RCRA Facility Investigation contained in Attachment A. DTSC will review the RFI Workplan and notify Respondent in writing of DTSC's approval or disapproval.

6.2. The April 13, 2005 sampling plan ‘Revised Work Plan for Initial Assessment of Soil Quality in the Vicinity of the Tank Pad’ with addendums dated August 9, 2005, March 23, 2006, July 25, 2006 and GSU comments will form the basis of the RFI Workplan. In addition, the RFI Workplan shall: (1) include a Health and Safety Plan prepared in accordance with Attachment C; (2) support development of alternatives from which a corrective measure will be selected by DTSC; and (3) include a specific schedule for implementation of all activities included in the RFI Workplan.

6.3. Respondent shall submit a RFI Report to DTSC for approval in accordance with DTSC-approved RFI Workplan schedule. The RFI Report shall be developed in a manner consistent with the Scope of Work for a RCRA Facility Investigation contained in Attachment A. If there is a phased investigation, separate RFI Reports and a report that summarizes the findings from all phases of the RFI must be submitted to DTSC. DTSC will review the RFI Report(s) and notify Respondent in writing of DTSC's approval or disapproval.

6.4. Respondent shall submit a RFI Summary Fact Sheet to DTSC that summarizes the findings from all phases of the RFI. The RFI Summary Fact Sheet shall be submitted to DTSC in accordance with the schedule contained in the approved RFI Workplan. DTSC will review the RFI Summary Fact Sheet and notify Respondent in writing of DTSC's approval or disapproval, including any comments and/or modifications. When DTSC approves the RFI Summary Fact Sheet, Respondent shall mail the approved RFI Summary Fact Sheet to all individuals on the Facility mailing list established pursuant to California Code Regulations, title 22, section 66271.9(c)(1)(D), within 15 calendar days of receipt of written approval.

7. Based on the information available to DTSC, Respondent may be required to conduct a Risk Assessment to evaluate potential human health risk and ecological risk and to establish site-specific action levels and cleanup standards. If DTSC determines that a Risk Assessment is required, Respondent shall submit to DTSC for approval a Risk Assessment Workplan within 40 days of receipt of DTSC's determination. Respondent shall submit to DTSC for approval a Risk Assessment Report in accordance with DTSC-approved Risk Assessment Workplan schedule.
CORRECTIVE MEASURES STUDY (CMS)

8.1. Respondent shall prepare a Corrective Measures Study, if contaminant concentrations exceed human health-based or ecologically-based action levels established by the DTSC-approved Risk Assessment Report if one is required under this Consent Agreement, or if DTSC otherwise determines that the contaminant releases pose a potential threat to human health or the environment.

8.2. Within 30 days of DTSC's approval of the RFI Report (or Respondent's receipt of a written request from DTSC), Respondent shall submit a CMS Workplan to DTSC. The CMS Workplan is subject to approval by DTSC and shall be developed in a manner consistent with the Scope of Work for a Corrective Measures Study contained in Attachment E.

8.3. The CMS Workplan shall detail the methodology for developing and evaluating potential corrective measures to remedy any contamination at the Facility. The CMS Workplan shall identify the potential corrective measures, including any innovative technologies, which may be used for the containment, treatment, remediation, and/or disposal of contamination.

8.4. Respondent shall prepare treatability studies for all potential corrective measures that involve treatment except where Respondent can demonstrate to DTSC's satisfaction that they are not needed. The CMS Workplan shall include, at a minimum, a summary of the proposed treatability study including a conceptual design, a schedule for submitting a treatability study workplan, or Respondent's justification for not proposing a treatability study.

8.5. Respondent shall submit a CMS Report to DTSC for approval in accordance with DTSC-approved CMS Workplan schedule. The CMS Report shall be developed in a manner consistent with the Scope of Work for a Corrective Measures Study contained in Attachment E. DTSC will review the CMS Report and notify Respondent in writing of DTSC's approval or disapproval.

REMEDY SELECTION

9.1. DTSC will provide the public with an opportunity to review and comment on the final draft of the CMS Report, DTSC's proposed corrective measures for the Facility, and DTSC's justification for selection of such corrective measures. Depending on the level of community concern, DTSC may conduct a public hearing to obtain comments.

9.2. Following the public comment period, DTSC may select final corrective measures or require Respondent to revise the CMS Report and/or perform additional corrective measures studies.
9.3. DTSC will notify Respondent of the final corrective measures selected by DTSC in the Final Decision and Response to Comments. The notification will include DTSC’s reasons for selecting the corrective measures.

CORRECTIVE MEASURES IMPLEMENTATION (CMI)

10.1. Within 30 days of Respondent's receipt of notification of DTSC's selection of the corrective measures, Respondent shall submit to DTSC a Corrective Measures Implementation (CMI) Workplan. The CMI Workplan is subject to approval by DTSC and shall be developed in a manner consistent with the Scope of Work for Corrective Measures Implementation contained in Attachment F.

10.2. Concurrent with the submission of a CMI Workplan, Respondent shall submit to DTSC a Health and Safety Plan in accordance with Attachment C.

10.3. Concurrent with the submission of a CMI Workplan, Respondent shall submit to DTSC for approval a Community Profile in accordance with Attachment D. Based on the information provided in the Community Profile and any Supplement to the Community Profile, if DTSC determines that there is a high level of community concern about the Facility, DTSC may require Respondent to prepare a Public Participation Plan.

10.4. The CMI program shall be designed to facilitate the design, construction, operation, maintenance, and monitoring of corrective measures at the Facility. In accordance with the schedule contained in the approved CMI Workplan, Respondent shall submit to DTSC the documents listed below, to the extent applicable. These documents shall be developed in a manner consistent with the Scope of Work for Corrective Measures Implementation contained in Attachment E. The scope and substance of the CMI should be focused to fit the complexity of the site-specific situation. Not all of the documents listed below may be needed for the Facility.

- Operation and Maintenance Plan
- Draft Plans and Specifications
- Final Plans and Specifications
- Construction Workplan
- Construction Completion Report
- Corrective Measures Completion Report

10.5. DTSC will review all required CMI documents and notify Respondent in writing of DTSC's approval or disapproval.

10.6. As directed by DTSC, within 90 days of DTSC's approval of all required CMI documents, Respondent shall establish a financial assurance mechanism for Corrective Measures Implementation. The financial assurance mechanisms may include any mechanism described in California Code of Regulations, title 22, sections 66264.143 or 66265.143 as applicable. The mechanism shall be established to allow DTSC access
to the funds to undertake Corrective Measures Implementation tasks if Respondent is unable or unwilling to undertake the required actions.

CALIFORNIA ENVIRONMENTAL QUALITY ACT

11. DTSC must comply with the California Environmental Quality Act (CEQA) insofar as activities required by this Consent Agreement are projects subject to CEQA. Respondent shall provide all information necessary to facilitate any CEQA analysis. DTSC will make an initial determination regarding the applicability of CEQA. If the activities are not exempt from CEQA, DTSC will conduct an Initial Study. Based on the results of the Initial Study, DTSC will determine if a Negative Declaration or an Environmental Impact Report (EIR) should be prepared. DTSC will prepare and process any such Negative Declaration. However, should DTSC determine that an EIR is necessary; such an EIR would be prepared under a separate agreement between DTSC and Respondent.

DTSC APPROVAL

12.1. Respondent shall revise any workplan, report, specification, or schedule in accordance with DTSC's written comments. Respondent shall submit to DTSC any revised documents by the due date specified by DTSC. Revised submittals are subject to DTSC's approval or disapproval.

12.2. Upon receipt of DTSC's written approval, Respondent shall commence work and implement any approved workplan in accordance with the schedule and provisions contained therein.

12.3. Any DTSC-approved workplan, report, specification, or schedule required under this Consent Agreement shall be deemed incorporated into this Consent Agreement.

12.4. Verbal advice, suggestions, or comments given by DTSC representatives will not constitute an official approval or decision.

SUBMITTALS

13.1. Beginning with the first full month following the effective date of this Consent Agreement, Respondent shall provide DTSC with bi-monthly progress reports of corrective action activities conducted pursuant to this Consent Agreement. Progress reports are due on the first day of the first month following the close of each reporting period. The progress reports shall conform to the Scope of Work for Progress Reports contained in Attachment G. DTSC may adjust the frequency of progress reporting to be consistent with site-specific activities.

13.2. Any report or other document submitted by Respondent pursuant to this Consent Agreement shall be signed and certified by the project coordinator, a responsible corporate officer, or a duly authorized representative.
13.3. The certification required by paragraph 13.2 above, shall be in the following form:

I certify that the information contained in or accompanying this submittal is true, accurate, and complete. As to those portions of this submittal for which I cannot personally verify the accuracy, I certify that this submittal and all attachments were prepared at my direction in accordance with procedures designed to assure that qualified personnel properly gathered and evaluated the information submitted.

Signature: __________________
Name: _____________________
Title: _____________________
Date: _____________________

13.4. Respondent shall provide 3 copies of all documents, including but not limited to, workplans, reports, and correspondence. Submittals specifically exempted from this copy requirement are all progress reports and correspondence of less than 15 pages, of which one copy is required.

13.5. Unless otherwise specified, all reports, correspondence, approvals, disapprovals, notices, or other submissions relating to this Consent Agreement shall be in writing and shall be sent to the current Project Coordinators.

PROPOSED CONTRACTOR/CONSULTANT

14. All work performed pursuant to this Consent Agreement shall be under the direction and supervision of a professional engineer or registered geologist, registered in California, with expertise in hazardous waste site cleanup. Respondent's contractor or consultant shall have the technical expertise sufficient to fulfill his or her responsibilities. Within 14 days of the effective date of this Consent Agreement, Respondent shall notify DTSC Project Coordinator in writing of the name, title, and qualifications of the professional engineer or registered geologist and of any contractors or consultants and their personnel to be used in carrying out the terms of this Consent Agreement.

ADDITIONAL WORK

15. DTSC may determine or Respondent may propose that certain tasks, including investigatory work, engineering evaluation, or procedure/methodology modifications are necessary in addition to, or in lieu of, the tasks and deliverables included in any part of DTSC-approved workplans. DTSC shall request in writing that Respondent perform the
additional work and shall specify the basis and reasons for DTSC’s determination that the additional work is necessary. Within 14 days after the receipt of such determination, Respondent may confer with DTSC to discuss the additional work DTSC has requested. If required by DTSC, Respondent shall submit to DTSC a workplan for the additional work. Such workplan shall be submitted to DTSC within 30 days of receipt of DTSC’s determination or according to an alternate schedule established by DTSC. Upon approval of a workplan, Respondent shall implement it in accordance with the provisions and schedule contained therein. The need for, and disputes concerning, additional work are subject to the dispute resolution procedures specified in this Consent Agreement.

QUALITY ASSURANCE

16.1. All sampling and analyses performed by Respondent under this Consent Agreement shall follow applicable DTSC and U.S. EPA guidance for sampling and analysis. Workplans shall contain quality assurance/quality control and chain of custody procedures for all sampling, monitoring, and analytical activities. Any deviations from the approved workplans must be approved by DTSC prior to implementation, must be documented, including reasons for the deviations, and must be reported in the applicable report.

16.2. The names, addresses, and telephone numbers of the California State certified analytical laboratories Respondent proposes to use must be specified in the applicable workplans.

SAMPLING AND DATA/DOCUMENT AVAILABILITY

17.1. Respondent shall submit to DTSC upon request the results of all sampling and/or tests or other data generated by its employees, agents, consultants, or contractors pursuant to this Consent Agreement.

17.2. Respondent shall notify DTSC in writing at least seven days prior to beginning each separate phase of field work approved under any workplan required by this Consent Agreement. If Respondent believes it must commence emergency field activities without delay, Respondent may seek emergency telephone authorization from DTSC Project Coordinator or, if the Project Coordinator is unavailable, his/her Branch Chief, to commence such activities immediately.

17.3. At the request of DTSC, Respondent shall provide or allow DTSC or its authorized representative to take split or duplicate samples of all samples collected by Respondent pursuant to this Consent Agreement. Similarly, at the request of Respondent, DTSC shall allow Respondent or its authorized representative to take split or duplicate samples of all samples collected by DTSC under this Consent Agreement.
ACCESS

18. Subject to the Facility's security and safety procedures, Respondent agrees to provide DTSC and its representatives access at all reasonable times to the Facility and any off-site property to which access is required for implementation of this Consent Agreement and shall permit such persons to inspect and copy all records, files, photographs, documents, including all sampling and monitoring data, that pertain to work undertaken pursuant to this Consent Agreement and that are within the possession or under the control of Respondent or its contractors or consultants.

RECORD PRESERVATION

19.1. Respondent shall retain, during the pendency of this Consent Agreement and for a minimum of six years after its termination, all data, records, and documents that relate in any way to the performance of this Consent Agreement or to hazardous waste management and/or disposal at the Facility. Respondent shall notify DTSC in writing 90 days prior to the destruction of any such records, and shall provide DTSC with the opportunity to take possession of any such records. Such written notification shall reference the effective date, caption, and docket number of this Consent Agreement and shall be addressed to:

Mohinder Sandhu, P.E. Chief
Standardized Permitting and Corrective Action Branch
Hazardous Waste Management Program
Department of Toxic Substances Control
8800 Cal Center Drive
Sacramento, Ca 95826

19.2. If Respondent retains or employs any agent, consultant, or contractor for the purpose of carrying out the terms of this Consent Agreement, Respondent will require any such agents, consultants, or contractors to provide Respondent a copy of all documents produced pursuant to this Consent Agreement.

19.3. All documents pertaining to this Consent Agreement shall be stored in a central location at the Facility, or at a location otherwise agreed to by the parties, to afford easy access by DTSC and its representatives.

DISPUTE RESOLUTION

20.1. The parties agree to use their best efforts to resolve all disputes informally. The parties agree that the procedures contained in this section are the sole administrative procedures for resolving disputes arising under this Consent Agreement. If Respondent
fails to follow the procedures contained in this section, it shall have waived its right to further consideration of the disputed issue.

20.2. If Respondent disagrees with any written decision by DTSC pursuant to this Consent Agreement, Respondent's Project Coordinator shall orally or in writing notify DTSC's Project Coordinator of the dispute. The Project Coordinators shall attempt to resolve the dispute informally.

20.3. If the Project Coordinators cannot resolve the dispute informally, Respondent may pursue the matter formally by placing its objection in writing. Respondent's written objection must be forwarded to Mohinder Sandhu, P.E., Chief, Standardized permitting and Corrective Action Branch, Hazardous Waste Management Program, Department of Toxic Substances Control, with a copy to DTSC's Project Coordinator. The written objection must be mailed to the Branch Chief within 14 days of Respondent's receipt of DTSC's written decision. Respondent's written objection must set forth the specific points of the dispute and the basis for Respondent's position.

20.4. DTSC and Respondent shall have 14 days from DTSC's receipt of Respondent's written objection to resolve the dispute through formal discussions. This period may be extended by DTSC for good cause. During such period, Respondent may meet or confer with DTSC to discuss the dispute.

20.5. After the formal discussion period, DTSC will provide Respondent with its written decision on the dispute. DTSC's written decision will reflect any agreements reached during the formal discussion period and be signed by the Branch Chief or his/her designee.

20.6. During the pendency of all dispute resolution procedures set forth above, the time periods for completion of work required under this Consent Agreement that are affected by such dispute shall be extended for a period of time not to exceed the actual time taken to resolve the dispute. The existence of a dispute shall not excuse, toll, or suspend any other compliance obligation or deadline required pursuant to this Consent Agreement.

RESERVATION OF RIGHTS

21.1. DTSC reserves all of its statutory and regulatory powers, authorities, rights, and remedies, which may pertain to Respondent's failure to comply with any of the requirements of this Consent Agreement. Respondent reserves all of its statutory and regulatory rights, defenses and remedies, as they may arise under this Consent Agreement. This Consent Agreement shall not be construed as a covenant not to sue, release, waiver, or limitation on any powers, authorities, rights, or remedies, civil or criminal, that DTSC or Respondent may have under any laws, regulations or common law.
21.2. DTSC reserves the right to disapprove of work performed by Respondent pursuant to this Consent Agreement and to request that Respondent perform additional tasks.

21.3. DTSC reserves the right to perform any portion of the work consented to herein or any additional site characterization, feasibility study, and/or remedial actions it deems necessary to protect human health and/or the environment. DTSC may exercise its authority under any applicable state or federal law or regulation to undertake response actions at any time. DTSC reserves its right to seek reimbursement from Respondent for costs incurred by the State of California with respect to such actions. DTSC will notify Respondent in writing as soon as practicable regarding the decision to perform any work described in this section.

21.4. If DTSC determines that activities in compliance or noncompliance with this Consent Agreement have caused or may cause a release of hazardous waste and/or hazardous waste constituents, or a threat to human health and/or the environment, or that Respondent is not capable of undertaking any of the work required, DTSC may order Respondent to stop further implementation of this Consent Agreement for such period of time as DTSC determines may be needed to abate any such release or threat and/or to undertake any action which DTSC determines is necessary to abate such release or threat. The deadlines for any actions required of Respondent under this Consent Agreement affected by the order to stop work shall be extended to take into account DTSC's actions.

21.5. This Consent Agreement is not intended to be nor shall it be construed to be a permit. This Consent Agreement is not a substitute for, and does not preclude DTSC from requiring, any hazardous waste facility permit, post closure permit, closure plan or post closure plan. The parties acknowledge and agree that DTSC's approval of any workplan, plan, and/or specification does not constitute a warranty or representation that the workplans, plans, and/or specifications will achieve the required cleanup or performance standards. Compliance by Respondent with the terms of this Consent Agreement shall not relieve Respondent of its obligations to comply with the Health and Safety Code or any other applicable local, state, or federal law or regulation.

OTHER CLAIMS

22. Except as provided in this Consent Agreement, nothing in this Consent Agreement shall constitute or be construed as a release by DTSC or Respondent from any claim, cause of action, or demand in law or equity against any person, firm, partnership, or corporation for any liability it may have arising out of or relating in any way to the generation, storage, treatment, handling, transportation, release, or disposal of any hazardous constituents, hazardous substances, hazardous wastes, pollutants, or contaminants found at, taken to, or taken or migrating from the Facility.
COMPLIANCE WITH WASTE DISCHARGE REQUIREMENTS

23. Respondent shall comply with all applicable waste discharge requirements issued by the State Water Resources Control Board or a California regional water quality control board.

OTHER APPLICABLE LAWS

24. All actions required by this Consent Agreement shall be conducted in accordance with the requirements of all local, state, and federal laws and regulations. Respondent shall obtain or cause its representatives to obtain all permits and approvals necessary under such laws and regulations.

REIMBURSEMENT OF DTSC’S COSTS

25.1. Respondent shall pay DTSC’s costs incurred in the implementation of this Consent Agreement.

25.2. An estimate of DTSC’s costs is included as Attachment H showing the amount of $76,860. It is understood by the parties that this amount is only a cost estimate for the activities shown on Exhibit A and it may differ from the actual costs incurred by DTSC in overseeing these activities or in implementing this Consent Agreement. DTSC will provide additional cost estimates to Respondent as the work progresses under the Consent Agreement.

25.3. Respondent shall make an advance payment to DTSC in the amount of $38,430 within 30 days of the effective date of this Consent Agreement. If the advance payment exceeds DTSC’s costs, DTSC will refund the balance within 120 days after the execution of the Acknowledgment of Satisfaction pursuant to Section 27 of this Consent Agreement.

25.4. DTSC will provide Respondent with a billing statement at least quarterly, which will include the name(s) of the employee(s), identification of the activities, the amount of time spent on each activity, and the hourly rate charged. If Respondent does not pay an invoice within 60 days of the date of the billing statement, the amount is subject to interest as provided by Health and Safety Code section 25360.1.

25.5. DTSC will retain all costs records associated with the work performed under this Consent Agreement as required by state law. DTSC will make all documents that support the DTSC’s cost determination available for inspection upon request, as provided by the Public Records Act.

25.6. Any dispute concerning DTSC’s costs incurred pursuant to this Consent Agreement is subject to the Dispute Resolution provision of this Consent Agreement.
and the dispute resolution procedures as established pursuant to Health and Safety Code section 25269.2. DTSC reserves its right to recover unpaid costs under applicable state and federal laws.

25.7. All payments shall be made within 30 days of the date of the billing statement by check payable to the Department of Toxic Substances Control and shall be sent to:

Accounting Unit
Department of Toxic Substances Control
P. O. Box 806
Sacramento, California 95812-0806

All checks shall reference the name of the Facility, the Respondent's name and address, and the docket number of this Consent Agreement. Copies of all checks and letters transmitting such checks shall be sent simultaneously to DTSC's Project Coordinator.

MODIFICATION

26.1. This Consent Agreement may be modified by mutual agreement of the parties. Any agreed modification shall be in writing, shall be signed by both parties, shall have as its effective date the date on which it is signed by all the parties, and shall be deemed incorporated into this Consent Agreement.

26.2. Any requests for revision of an approved workplan requirement must be in writing. Such requests must be timely and provide justification for any proposed workplan revision. DTSC has no obligation to approve such requests, but if it does so, such approval will be in writing and signed by the Mohinder Sandhu, Chief, Standardized Permitting and Corrective Action Branch, Hazardous Waste Management Program, Department of Toxic Substances Control, or his or her designee. Any approved workplan revision shall be incorporated by reference into this Consent Agreement.

TERMINATION AND SATISFACTION

27. The provisions of this Consent Agreement shall be deemed satisfied upon the execution by both parties of an Acknowledgment of Satisfaction (Acknowledgment). DTSC will prepare the Acknowledgment for Respondent's signature. The Acknowledgment will specify that Respondent has demonstrated to the satisfaction of DTSC that the terms of this Consent Agreement including payment of DTSC's costs have been satisfactorily completed. The Acknowledgment will affirm Respondent's continuing obligation to preserve all records after the rest of the Consent Agreement is satisfactorily completed.
EFFECTIVE DATE

28. The effective date of this Consent Agreement shall be the date on which this Consent Agreement is signed by all the parties. Except as otherwise specified, "days" means calendar days.

SIGNATORIES

29. Each undersigned representative certifies that he or she is fully authorized to enter into this Consent Agreement.

2/16/2007 -- Signed By --
DATE: _______________ BY: ____________________________
Ron Flury, President
Ecology Control Industries, Inc.

2/21/2007 -- Signed By --
DATE: _______________ BY: __________________________________
Mohinder S. Sandhu, P.E., Chief,
Standardized Permitting and Corrective Action Branch
Hazardous Waste Management Program
Department of Toxic Substances Control
ATTACHMENT A

SCOPE OF WORK FOR A RCRA FACILITY INVESTIGATION

PURPOSE

The purpose of this RCRA Facility Investigation (RFI) is to determine the nature and extent of releases of hazardous waste or constituents from regulated units, solid waste management units, and other source areas at the Facility and to gather all necessary data to support the Corrective Measures Study. The RFI must include characterization of the facility (processes, waste management, etc), environmental setting, source areas, nature and extent of contamination, migration pathways (transport mechanisms) and all potential receptors.

SCOPE

The documents required for an RFI are, unless the Department of Toxic Substances Control (Department) specifies otherwise, a Current Conditions Report, a RCRA Facility Investigation Workplan, a RCRA Facility Investigation Report and a Health and Safety Plan. The scope of work (SOW) for each document is specified below. The SOW's are intended to be flexible documents capable of addressing both simple and complex site situations. If the Respondent can justify, to the satisfaction of the Department, that a plan and/or report or portions thereof are not needed in the given site specific situation, then the Department may waive that requirement.

The Department may require the Respondent to conduct additional studies beyond what is discussed in the SOW's in order to meet the objectives of the RFI. The Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks.

A. Current Conditions Report

The Current Conditions Report must describe existing information pertinent to the facility including operations, processes, waste management, geology, hydrogeology, contamination, migration pathways, potential receptor populations and interim corrective measures. The required format for a current conditions report is described below. If some of this information does not exist, so indicate in the applicable section.
1. Introduction
 a. Purpose
 Describe the purpose of the current conditions report (e.g., summary and evaluation of existing information related to the facility; required as a component of the RCRA Facility Investigation).
 b. Organization of Report
 Describe how the report is organized.

2. Facility Description
 Summarize background, current operations, waste management and products produced at the facility. Include a map that shows the general geographic location of the facility.

 Describe current facility structures including any buildings, tanks, sumps, wells, waste management areas, landfills, ponds, process areas and storage areas.

 Include detailed facility maps that clearly show current property lines, the owners of all adjacent property, surrounding land use (residential, commercial, agricultural, recreational, etc.), all tanks, buildings, process areas, utilities, paved areas, easements, rights-of-way, waste management areas, ponds, landfills, piles, underground tanks, wells and other facility features.

3. Facility History
 a. Ownership History
 Describe the ownership history of the facility.
 b. Operational History
 Describe in detail how facility operations, processes and products have changed over time (historical aerial photographs could be useful for this purpose).
 c. Regulatory History
Describe all permits (including waste discharge requirements) requested or received, any enforcement actions taken by the Department or designated agencies and any closure activities that are planned or underway.

d. **Waste Generation**

Describe all wastes (solid or hazardous) that have been generated at the facility. Include approximate waste volumes generated and summaries of any waste analysis data. Show how the waste stream (volume and chemical composition) has changed over time.

e. **Waste Management**

Describe in detail all past solid and hazardous waste treatment, storage and disposal activities at the facility. Show how these activities have changed over time and indicate the current status. Make a clear distinction between active waste management units and older out of service waste management units. Identify which waste management units are regulated under RCRA or California Health and Safety Code.

Include maps showing: (1) all solid or hazardous waste treatment, storage or disposal areas active after November 19, 1980, (2) all known past solid waste or hazardous waste treatment, storage or disposal areas regardless of whether they were active on November 19, 1980 and (3) all known past or present underground tanks or piping.

f. **Spill and Discharge History**

Provide approximate dates or periods of past product and waste spills, identify the materials spilled and describe any response actions conducted. Include a summary of any sampling data generated as a result of the spill. Include a map showing approximate locations of spill areas at the facility.

g. **Chronology of Critical Events**

Provide a chronological list (including a brief description) of major events, communications, agreements, notices of violation, spills, discharges that occurred throughout the facility's history.

4. **Environmental Setting**
a. **Location/Land Use**

Discuss facility size, location and adjacent land use. Include a rough demographic profile of the human population who use or have access to the facility and adjacent lands. Provide approximate distance to nearest residential areas, schools, nursing homes, hospitals, parks, playgrounds, etc.

4.2 Local Ecology

Describe any endangered or threatened species near the facility. Include a description of the ecological setting on and adjacent to the facility. Provide approximate distance to nearest environmentally sensitive areas such as marsh lands, wetlands, streams, oceans, forests, etc.

4.3 Topography and Surface Drainage

Describe the regional and site specific topography and surface drainage patterns that exist at the facility. Include a map that shows the topography and surface drainage depicting all waterways, wetlands, floodplains, water features, drainage patterns and surface water containment areas.

4.4 Climate

Discuss mean annual temperatures, temperature extremes, 24-hour rainfall, average annual rainfall, prevailing wind direction, etc.

4.5 Surface Water Hydrology

Describe the facility's proximity (distance) to surface water bodies (e.g., coastal waters, lakes, rivers, creeks, drainage basins, floodplains, vernal pools, wetlands, etc.).

4.6 Geology

Describe the regional and site specific geology including stratigraphy and structure. Include cross sections to show the subsurface stratigraphy.

4.7 Hydrogeology

Describe the regional and site specific hydrogeologic setting including any information concerning local aquifers, ground water levels, gradients, flow direction, hydraulic conductivity, and velocity. Include potentiometric surface contour maps. Describe the beneficial uses of the ground water (e.g., drinking water supply, agricultural water supply, etc.).
4.8 Ground Water Monitoring System

Describe the facility's ground water monitoring system including a table detailing the existing well construction. The table must, at a minimum, identify the following construction details for each well:

- Well ID
- Completion Date
- Drilling Method
- Borehole Diameter (inches)
- Well Casing Diameter and Type
- Measuring Point Elevation (feet MSL)
- Borehole Depth (feet BGS)
- Depth of Well (feet)
- Screened Interval
- Formation Screened
- Slot Size & Type (inches)
- Filter Pack Material
- Filter Pack Thickness
- Type of Filter Pack Seal
- Thickness of Filter Pack Seal
- Pump System (dedicated or non-dedicated)
- Type of Pump
- Approximate Depth to Water (feet BGS)

If some of this information is not available, so indicate on the table with an "NA". {BGS: Below Ground Surface, MSL: Mean Sea Level}

The monitoring well locations must be shown on the facility map (see Section A.2 of this Attachment).

5. Existing Degree and Extent of Contamination

For each medium where the Agreement identifies a release (e.g., soil, ground water, surface water, air, etc.), describe the existing extent of contamination. This description must include all available monitoring data and qualitative information on the locations and levels of contamination at the facility (both onsite and offsite). Include a general assessment of the data quality, a map showing the location of all existing sampling points and potential source areas and contour maps showing any existing ground water plumes at the facility (if ground water release). Highlight potential ongoing release areas that would warrant use of interim corrective measures (see Section 8, Interim Corrective Measures).
5.1 Previous Investigations

List and briefly describe all previous investigations that have occurred at the facility, agencies (e.g., the Department's Site Mitigation Branch, the Regional Water Quality Control Board, etc.) which required and/or oversaw the investigations, and agency contacts.

6. Potential Migration Pathways

6.1 Physical Properties of Contaminants

Identify the applicable physical properties for each contaminant that may influence how the contaminant moves in the environment. These properties could include melting point (degrees C), water solubility (mg/l), vapor pressure (mm Hg), Henry's law constant (atm-m3/mol), density (g/cc), dynamic viscosity (cp), kinematic viscosity (cs), octanol/water partition coefficient (log Kow), soil organic carbon/water partition coefficient (log koc) and soil/water partition coefficients. Include a table that summarizes the applicable physical properties for each contaminant.

6.2 Conceptual Model of Contaminant Migration

Develop a conceptual model of contaminant migration. The conceptual model consists of a working hypothesis of how the contaminants may move from the release source to the receptor population. The conceptual model is developed by looking at the applicable physical parameters for each contaminant and assessing how the contaminant may migrate given the existing site conditions (geologic features, depth to ground water, etc.).

Describe the phase (water, soil, gas, non-aqueous) and location where contaminants are likely to be found (e.g., if a ground water contaminant has a low water solubility and a high density, then the contaminant will likely sink and be found at the bottom of the aquifer, phase: non-aqueous). Include a discussion of potential transformation reactions that could impact the type and number of contaminants (i.e., what additional contaminants could be expected as a result of biotic and abiotic transformation reactions given the existing soil conditions).

A typical conceptual model should include a discussion similar to the following: "Benzene, ethylbenzene, toluene and xylenes are potential contaminants at the facility. Based on their high vapor pressures and relatively low water solubilities (see Henry's law constant), the primary fate of these compounds in surface soils or surface water is expected to be volatilization to the atmosphere. These mono-cyclic aromatic hydrocarbons may leach from soils into groundwater. The log koc (soil
organic carbon/water partition coefficient) values for these compounds ranges from 1.9 to 4.0, indicating that sorption to original matter in soils or sediments may occur only to a limited extent.

7. Potential Impacts of Existing Contamination

Describe the potential impacts on human health and the environment from any existing contamination and/or ongoing activities at the facility. This description must consider the possible impacts on sensitive ecosystems and endangered species as well as on local populations. Potential impacts from any releases to ground water, surface water, soil (including direct contact with contaminated surface soil) and air (including evaporation of volatile organic compounds from contaminated soil) must be discussed.

7.1 Ground Water Releases

Identify all wells (municipal, domestic, agricultural, industrial, etc.) within a 1 mile radius of the facility. Include a summary of available water sampling data for any identified municipal, industrial or domestic supply wells.

Develop a well inventory table that lists the following items for each identified well:

- Well Designation
- State ID
- Reported Owner
- Driller
- Date of Completion
- Original Use of Well
- Current Use of Well
- Drilling Method
- Borehole Diameter (inches)
- Casing Diameter (inches)
- Perforated Interval (feet)
- Gravel Pack Interval (feet)
- Total Well Depth (feet)
- Depth to Water (feet below ground surface)
- Date of Water Level Measurement

If some of this information is not available, so indicate on the table with an "NA".
Include a regional map showing the facility, ground water flow direction (if known) and the location of all identified wells within a 1 mile radius of the facility.

Identify and describe any potential ground water discharge to surface water bodies.

Identify and list all relevant and applicable water standards for the protection of human health and the environment (e.g., maximum contaminant levels, water quality standards, etc).

7.2 Surface Water Releases

Discuss the facility's potential impact on surface water within a 2 mile radius of the facility. Describe the potential beneficial uses of the surface water (e.g., drinking water supply, recreational, agricultural, industrial, or environmentally sensitive). Identify all water supply intake points and contact areas within a 2 mile radius of the facility. Include a summary of the most recent water sampling data available for each of the identified water supply intake points. Include a description of the biota in surface water bodies on, adjacent to, or which can be potentially affected by the release. Also summarize any available sediment sampling data.

Include a regional map showing the facility, surface water flow direction, beneficial use areas, and the location of any identified water supply intake points or contact areas that are within a 2 mile radius of the facility.

7.3 Sensitive Ecosystems/Habitats

Discuss the facility's potential impact on sensitive ecosystems.

8. Interim Corrective Measures and Stabilization Assessment

Identify all corrective measures that were or are being undertaken at the facility to stabilize contaminant releases. Describe the objectives of the corrective measures including how the measure is mitigating a potential threat to human health and the environment. Summarize the design features of the corrective measure. Include a schedule for completing any ongoing or future work.

Identify and describe potential interim corrective measure alternatives that could be implemented immediately to stabilize any ongoing releases and/or prevent further migration of contaminants.

9. Data Needs
Assess the amount and quality of existing data concerning the facility and determine what additional information must be collected to meet the objectives of the RFI. This assessment must identify any additional information that may be needed to (1) support development of interim measures for early action and (2) adequately evaluate and compare corrective measures alternatives (e.g., field work, treatability studies, computer modeling, literature searches, vendor contacts, etc.). For example, if soil vapor extraction (SVE) is a likely option to address contamination at the facility, then the RFI should collect applicable field data to assess SVE (e.g., soil gas analysis, depth to ground water, etc.). The RFI Workplan must detail how this additional information will be collected.

10. References

Provide a list of references cited in the Current Condition Report.
Attachment A
Scope of Work for a RCRA Facility Investigation

B. RCRA Facility Investigation Workplan

The RCRA Facility Investigation (RFI) Workplan shall define the procedures necessary to:

- Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any ground water contamination in and around the facility (only required for releases to ground water);
- Characterize the geology and hydrogeology in and around the facility (only required for releases to ground water and possibly for releases to soil);
- Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any soil contamination in and around the facility (only required for releases to soil);
- Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any soil gas contamination in and around the facility (may be required for releases to ground water and/or soil depending on the circumstances);
- Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any surface water contamination (includes surface water sediments) at the facility (only required for releases to surface water);
- Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any air releases at the facility (only required for air releases);
- Characterize any potential sources of contamination (required for all releases);
- Characterize the potential pathways of contaminant migration (required for all releases);
- Identify any actual or potential receptors (required for all releases);
- Gather all data to support a risk and/or ecological assessment (if required);
- Gather all necessary data to support interim corrective measures to stabilize ongoing releases and prevent further contaminant migration (required for all releases); and
- Gather all necessary data to support the Corrective Measures Study (required for all releases). This could include conducting pilot, laboratory and/or bench scale studies to assess the effectiveness of a treatment method.

The RFI Workplan shall describe all aspects of the investigation, including project management, sampling and analysis, well drilling and installation and quality assurance and quality control. If the scope of the investigation is such that more
than one phase is necessary, the "Phase 1" RFI Workplan must include a summary description of each phase.

The required format for an RFI Workplan is described below:

1. Introduction

 Briefly introduce the Workplan. Discuss the Order requiring the RFI and how the Workplan is organized.

2. Investigation Objectives

 2.1 Project Objectives

 Describe the overall objectives and critical elements of the RFI. State the general information needed from the site (e.g., soil chemistry, hydraulic conductivity of aquifer, stratigraphy, ground water flow direction, identification of potential receptors, etc.). The general information should be consistent with the objectives of the RFI and the data needs identified in the Current Conditions Report.

 2.2 Data Quality Objectives

 Provide data quality objectives that identify what data are needed and the intended use of the data.

3. Project Management

 Describe how the investigation will be managed, including the following information:

 - Organization chart showing key personnel, levels of authority and lines of communication;
 - Project Schedule; and
 - Estimated Project Budget.

 Identify the individuals or positions who are responsible for: project management, field activities, laboratory analysis, database management, overall quality assurance, data validation, etc. Include a description of qualifications for personnel performing or directing the RFI, including contractor personnel.

4. Facility Background
Summarize existing contamination (e.g., contaminants, concentrations, etc.), local hydrogeologic setting and any other areas of concern at the facility. Include a map showing the general geographic location of the facility and a more detailed facility map showing the areas of contamination. Provide a reference to the Current Conditions Report and/or other applicable documents as a source of additional information.

5. Field Investigation

5.1 Task Description

Provide a qualitative description of each investigation task. Example tasks may include, but are not limited to the following:

- Task 1: Surface Soil Sampling
- Task 2: Subsurface Soil Boring
- Task 3: Data Gathering to Support Interim Corrective Measures
- Task 4: Monitoring Well Installation
- Task 5: Aquifer Testing
- Task 6: Ground Water Sampling
- Task 7: Potential Receptor Identification
- Task 8: Treatability Studies

5.2 Rationale for Sampling

Describe where all samples will be collected (location and depth), types of matrices that will be sampled and the analytical parameters. Explain the rationale for each sampling point, the total number of sampling points, and any statistical approach used to select these points. The conceptual model of contaminant migration developed in the Current Conditions Report should be considered when selecting sampling locations and depths. If some possible sampling points are excluded, explain why. Describe any field screening techniques that will be used to identify samples for laboratory analysis. Include the rationale for use of field screening techniques and criteria for sample selection.

5.2.1 Background Samples

Background samples should be analyzed for the complete set of parameters for each matrix; treat sediments, surface soils and subsurface soils as separate matrices. Background samples are collected, numbered, packaged, and sealed in the same manner as other samples. For long term and/or especially large projects, it is recommended that 10% of samples collected be from background locations.
5.3 Sample Analysis

List and discuss all analysis proposed for the project. Include a table that summarizes the following information for each analysis to be performed:

- Analytical Parameters
- Analytical Method Reference Number (from EPA SW 846)
- Sample Preparation and/or Extraction Method Reference Number (from SW 846)
- Practical Quantitation Limits

Discuss the rationale for selection of the analytical parameters. The rationale must relate to site history and the RFI objectives. The achievable detection limits or quantitation limits stated in the selected methods must be adequate for valid comparisons of analytical results against any action levels or standards. For example, the objective may be to collect ground water data for comparison with Maximum Contaminant Levels (MCL's). If this were the case, it would be important to ensure that any ground water test methods had detection limits below the MCL's. Give an explanation if all samples from the same matrix will not be analyzed for the same parameters.

Provide the name(s) of the laboratory(s) that will be doing the analytical work. Indicate any special certifications or ratings of the laboratory. Describe the steps that will be taken to select and pre-qualify analytical laboratories to be used including any previous audits and/or other criteria. If a definite laboratory has not yet been selected, list at least 3 laboratories that are being considered for the analytical work.

5.4 Sample Collection Procedures

Describe how sampling points will be selected in the field, and how these locations will be documented and marked for future reference. If a sampling grid will be used, describe the dimensions and lay out planned for the grid.

Outline sequentially or step-by-step the procedure for collecting a sample for each matrix and each different sampling technique. Include a description of sampling equipment (including materials of construction), field measurements, sample preservation, housekeeping/cleanliness techniques and well purging procedures. The procedure described must ensure that a representative sample is collected, and that sample handling does not result in cross contamination or unnecessary loss of contaminants. Special care in sample handling for volatile organic samples must be addressed.
Describe how and when duplicates, blanks, laboratory quality control samples and background samples will be collected.

The Respondent must include sufficient maps and tables to fully describe the sampling effort. This shall include, at a minimum, a map showing all proposed sampling locations and tables that contain the following information:

Sample Collection Table

Sampling Location/Interval

Analytical Parameters (e.g., volatile organic compounds)
 Analytical Method Number
 Matrix
 Preservation Method
 Holding Times
 Containers (quantity, size, type plus footnotes that discuss source and grade of containers)

Sample Summary Table

 Sample Description/Area (include QC samples)
 Analytical Parameters
 Analytical Method Number
 Preparation or Extraction Method Number
 Matrix
 Number of Sample Sites
 Number of Analyses

5.4.1 Equipment Decontamination

Describe the decontamination procedure for all drilling and sampling equipment (including metal sleeves).

The following is a recommended generic procedure for decontamination of sampling equipment:

- Wash with non-phosphate detergent
- Tap water rinse
- 0.1M nitric acid rinse (when cross contamination from metals is a concern)
- Deionized/distilled water rinse
- Pesticide grade solvent rinse (when semivolatiles and non-volatile organic contamination may be present)
- Deionized/distilled water rinse (twice)
- Organic free water rinse (HPLC grade)

The above procedure is not appropriate for every field condition. Clearly document the decontamination procedures.

5.4.2 Equipment Calibration and Maintenance

Logbooks or pre-formatted calibration worksheets should be maintained for major field instruments, to document servicing, maintenance and instrument modification. The calibration, maintenance and operating procedures for all instruments, equipment and sampling tools must be based upon manufacturer's instructions. List all field equipment to be used, specify the maintenance/calibration frequency for each instrument and the calibration procedures (referenced in text and included in appendices).

5.4.3 Sample Packaging and Shipment

Describe how samples will be packaged and shipped. All applicable Department of Transportation regulations must be followed.

5.4.4 Sample Documentation

Discuss the use of all paperwork including field notebooks, record logs, photographs, sample paperwork, and Chain of Custody forms (include a blank copy in RFI Workplan Appendices) and seals.

Describe how sample containers will be labeled and provide an example label if available. At a minimum, each sample container label should include: project ID, sample location, analytical parameters, date sampled and any preservative added to the sample.

A bound field log book must be maintained by the sampling team to provide a daily record of events. Field log books shall provide the means of recording all data regarding sample collection. All documentation in field books must be made in permanent ink. If an error is made, corrections must be made by crossing a line through the error and entering the correct information. Changes must be initialed, no entries shall be obliterated or rendered unreadable. Entries in the log book must include, at a minimum, the following for each day's sampling:

Date
Starting Time
Meteorological Conditions
Field Personnel Present
Level of Personal Protection
Site Identification
Field Observations/Parameters
Sample Identification Numbers
Location and Description of Sampling Points
Number of Samples Collected
Time of Sample Collection
Signature of Person Making the Entry

5.4.5 Disposal of Contaminated Materials

Describe the storage and disposal methods for all contaminated cuttings, well development and purge water, disposable equipment, decontamination water, and any other contaminated materials. The waste material must be disposed of in a manner consistent with local, state and federal regulations.

5.4.6 Standard Operating Procedures

If Standard Operating Procedures (SOPs) are referenced, the relevant procedure must be summarized in the RFI Workplan. The SOP must be specific to the type of tasks proposed and be clearly referenced in the RFI Workplan. The SOP must also be directly applicable, as written, to the RFI Workplan; otherwise, modifications to the SOP must be discussed. Include the full SOP description in the RFI Workplan appendix.

5.5 Well Construction and Aquifer Testing

When new monitoring wells (or piezometers) are proposed, describe the drilling method, well design and construction details (e.g., depth of well, screen length, slot size, filter pack material, etc.) and well development procedures. Describe the rationale for proposed well locations and selection of all well design and construction criteria (i.e., provide rationale for selection of slot size and screen length).

When aquifer testing is proposed, describe the testing procedures, flow rates, which wells are involved, test periods, how water levels will be measured, and any other pertinent information.

6. Quality Assurance and Quality Control
Quality control checks of field and laboratory sampling and analysis serve two purposes: to document the data quality, and to identify areas of weakness within the measurement process which need correction.
Include a summary table of data quality assurance objectives that, at a minimum, lists:

- Analysis Group (e.g., volatile organic compounds)
- Matrix
- Practical Quantitation Limits (PQL)
- Spike Recovery Control Limits (%R)
- Duplicate Control Limits +/- (RPD)
- QA Sample Frequency

A reference may note the specific pages from USEPA’s SW 846 Guidance Document that list the test method objectives for precision and accuracy. If the field and laboratory numerical data quality objectives for precision are the same and presented on a single table, then a statement should be made to this effect and added as a footnote to the table (e.g., "These limits apply to both field and laboratory duplicates"). Include a copy of the analytical laboratory quality assurance/quality control plan in the appendices of the RFI Workplan and provide the equations for calculating precision and accuracy.

6.1 Field Quality Control Samples

6.1.1 Field Duplicates

Duplicates are additional samples that must be collected to check for sampling and analytical precision. Duplicate samples for all parameters and matrices must be collected at a frequency of at least one sample per week or 10 percent of all field samples, whichever is greater.

Duplicates should be collected from points which are known or suspected to be contaminated. For large projects, duplicates should be spread out over the entire site and collected at regular intervals.

Duplicates must be collected, numbered, packaged, and sealed in the same manner as other samples; duplicate samples are assigned separate sample numbers and submitted blind to the laboratory.

6.1.2 Blank Samples

Blanks are samples that must be collected to check for possible cross-contamination during sample collection and shipment and in the laboratory. Blank samples should be analyzed for all parameters being evaluated. At least one blank sample per day must be done for all water and air sampling. Additionally, field blanks are required for soil sampling if non-dedicated field equipment is being used for sample collection.
Blank samples must be prepared using analytically-certified organic-free (HPLC-grade) water for organic parameters and metal-free (deionized-distilled) water for inorganic parameters. Blanks must be collected, numbered, packaged, and sealed in the same manner as other samples; blank samples are assigned separate sample numbers and submitted blind to the laboratory. The following types of blank samples may be required:

Equipment Blank: An equipment blank must be collected when sampling equipment (e.g., bladder pump) or a sample collection vessel (e.g., a bailer or beaker) is decontaminated and reused in the field. Use the appropriate "blank" water to rinse the sampling equipment after the equipment has been decontaminated and then collects this water in the proper sample containers.

Field Bottle Blank: This type of blank must be collected when sampling equipment decontamination is not necessary. The field bottle blank is obtained by pouring the appropriate "blank" water into a container at a sampling point.

6.2 **Laboratory Quality Control Samples**

Laboratories routinely perform matrix spike and laboratory duplicate analysis on field samples as a quality control check. A minimum of one field sample per week or 1 per 20 samples (including field blanks and duplicates), whichever is greater, must be designated as the "Lab QC Sample" for the matrix and laboratory duplicate analysis.

Laboratory quality control samples should be selected from sampling points which are suspected to be moderately contaminated. Label the bottles and all copies of the paperwork as "Lab QC Sample"; the laboratory must know that this sample is for their QC analyses. The first laboratory QC sample of the sampling effort should be part of the first or second day's shipment. Subsequent laboratory QC samples should be spread out over the entire sampling effort.

For water matrices, 2-3 times the normal sample volume must be collected for the laboratory QC sample. Additional volume is usually not necessary for soil samples.

6.3 **Performance System Audits by the Respondent**
This section should describe any internal performance and/or system audit which the Owner/Operator will conduct to monitor the capability and performance of the project. The extent of the audit program should reflect the data quality needs and intended data uses. Audits are used to quickly identify and correct problems thus preventing and/or reducing costly errors. For example, a performance audit could include monitoring field activities to ensure consistency with the workplan. If the audit strategy has already been addressed in a QA program plan or standard operating procedure, cite the appropriate section which contains the information.

7. Data Management

Describe how investigation data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data. To document any quality assurance anomalies, the RFI QC Summary Forms (see Appendix A of this attachment) must be completed by the analytical laboratory and submitted as part of the RFI Report. In addition, provide examples of any other forms or checklists to be used. Identify and discuss personnel and data management responsibilities, all field, laboratory and other data to be recorded and maintained, and any statistical methods that may be used to manipulate the data.

8. References

Provide a list of references cited in the RFI Workplan.
C. RCRA Facility Investigation Report

An RFI Report must be prepared that describes the entire site investigation and presents the basic results. The RFI Report must clearly present an evaluation of investigation results (e.g., all potential contaminant source areas must be identified, potential migration pathways must be described, and affected media shown, etc.).

The RFI Report must also include an evaluation of the completeness of the investigation and indicate if additional work is needed. This work could include additional investigation activities and/or interim corrective measures to stabilize contaminant release areas and limit contaminant migration. If additional work is needed, the Owner/Operator must submit a Phase 2 RFI Workplan and/or Interim Corrective Measures Workplan must be submitted to the Department along with the RFI Report.

At a minimum, the RFI Report must include:

- A summary of investigation results (include tables that summarize analytical results).
- A complete description of the investigation, including all data necessary to understand the project in its entirety including all investigative methods and procedures.
- A discussion of key decision points encountered and resolved during the course of the investigation.
- Graphical displays such as isopleths, potentiometric surface maps, cross-sections, plume contour maps (showing concentration levels, isoconcentration contours), facility maps (showing sample locations, etc.) and regional maps (showing receptor areas, water supply wells, etc.) that describe report results. Highlight important facts such as geologic features that may affect contaminant transport.
- Tables that list all chemistry data for each matrix investigated.
- An analysis of current and existing ground water data to illustrate temporal changes for both water chemistry and piezometric data (use graphics whenever possible).
- A description of potential or known impacts on human and environmental receptors from releases at the facility. Depending on the site specific circumstances, this analysis could be based on the results from contaminant dispersion models.
- A discussion of any upset conditions that occurred during any sampling events or laboratory analysis that may influence the results. The discussion must include any problems with the chain of custody procedures, sample holding times, sample preservation, handling and transport procedures, field equipment calibration and handling, field blank results that show potential sample contamination and any field
duplicate results that indicate a potential problem. Summary tables must be provided that show the upset condition and the samples that could be impacted. The RFI QC Summary Forms (see Appendix A of this attachment) must be completed by the analytical laboratory and submitted as part of the RFI Report.

- Assessment of the entire QA/QC program effectiveness.

In addition to the RFI Report, the Department may require the Owner/Operator to submit the analytical results (database) on a floppy disk (Department will specify the format). All raw laboratory and field data (e.g., analytical reports) must be kept at the facility and be made available or sent to the Department upon request.
D. Health and Safety Plan

1. Objectives

Describe the goals and objectives of the RFI Health and Safety plan (must apply to on-site personnel and visitors). The Health and Safety Plan must be consistent with the facility Contingency Plan, OSHA Regulations, NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (1985), all state and local regulations and other Department guidance as provided.

2. Hazard Assessment

List and describe the potentially hazardous substances that could be encountered by field personnel during investigation activities. Discuss the following:

- Inhalation Hazards
- Dermal Exposure
- Ingestion Hazards
- Physical Hazards
- Overall Hazard Rating

Include a table that, at a minimum, lists: known contaminants, highest observed concentration, media, and symptoms/effects of acute exposure.

3. Personal Protection/Monitoring Equipment

For each investigation task, describe personal protection levels and identify all monitoring equipment. Describe any action levels and corresponding response actions (i.e., when will levels of safety be upgraded). Describe decontamination procedures and areas.

4. Site Organization and Emergency Contacts

List and identify all contacts (include phone numbers). Identify the nearest hospital and provide a regional map showing the shortest route from the facility to the hospital. Describe site emergency procedures and any site safety organizations. Include evacuation procedures for neighbors (where applicable).

Include a facility Map showing emergency station locations (first aid, eye wash areas, etc.).
ATTACHMENT B

SCOPE OF WORK FOR INTERIM MEASURES IMPLEMENTATION

PURPOSE

Interim measures are actions to control and/or eliminate releases of hazardous waste and/or hazardous constituents from a facility prior to the implementation of a final corrective measure. Interim measures must be used whenever possible to achieve the goal of stabilization which is to control or abate threats to human health and/or the environment, and to prevent or minimize the spread of contaminants while long-term corrective action alternatives are being evaluated.

SCOPE

The documents required for Interim Measures (IM) are, unless the Department of Toxic Substances Control (Department) specifies otherwise, an IM Workplan, an Operation and Maintenance Plan and IM Plans and Specifications. The scope of work (SOW) for each document is specified below. The SOWs are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that a plan or portions thereof are not needed in the given site specific situation, then the Department may waive that requirement.

The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOWs in order to support the IM program. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks.

A. Interim Measures Workplan

The Owner/Operator or Respondent shall prepare an IM Workplan that evaluates interim measure options and clearly describes the proposed interim measure, the key components or elements that are needed, describes the designer’s vision of the interim measure in the form of conceptual drawings and schematics, and includes procedures and schedules for implementing the interim measure(s). The IM Workplan must be approved by the Department prior to implementation. The IM Workplan must, at a minimum, include the following elements:

1. Introduction/Purpose

Describe the purpose of the document and provide a summary of the project.
2. Conceptual Model of Contaminant Migration

It is important to know where the contaminants are and to understand how they are moving before an adequate interim measure can be developed. To address this critical question, the Owner/Operator or Respondent must present a conceptual model of the site and contaminant migration. The conceptual model consists of a working hypothesis of how the contaminants may move from the release source to the receptor population. The conceptual model is developed by looking at the applicable physical parameters (e.g., water solubility, density, Henry's Law Constant, etc.) for each contaminant and assessing how the contaminant may migrate given the existing site conditions (geologic features, depth to groundwater, etc.). Describe the phase (water, soil, gas, non-aqueous) and location where contaminants are likely to be found. This analysis may have already been done as part of earlier work (e.g., Current Conditions Report). If this is the case, then provide a summary of the conceptual model with a reference to the earlier document.

3. Evaluation of Interim Measure Alternatives

List, describe and evaluate interim measure alternatives that have the potential to stabilize the facility. Propose interim measures for implementation and provide rationale for the selection. Document the reasons for excluding any interim measure alternatives.

4. Description of Interim Measures

Qualitatively describe what the proposed interim measure is supposed to do and how it will function at the facility.

5. Data Sufficiency

Review existing data needed to support the design effort and establish whether or not there are sufficient accurate data available for this purpose. The Owner/Operator or Respondent must summarize the assessment findings and specify any additional data needed to complete the interim measure design. The Department may require or the Owner/Operator or Respondent may propose that sampling and analysis plans and/or treatability study workplans be developed to obtain the additional data. Submittal times for any new sampling and analysis plans and/or treatability study workplans must be included in the project schedule.
Attachment B
Scope of Work for Interim Measures Implementation

6. Project Management

Describe the levels of authority and responsibility (include organization chart), lines of communication and a description of the qualifications of key personnel who will direct the interim measure design and implementation effort (including contractor personnel).

7. Project Schedule

The project schedule must specify all significant steps in the process, when any key documents (e.g., plans and specifications, operation and maintenance plan) are to be submitted to the Department and when the interim measure is to be implemented.

8. Design Basis

Discuss the process and methods used to design all major components of the interim measure. Discuss the significant assumptions made and possible sources of error. Provide justification for the assumptions.

10. Site plan showing preliminary plant layout and/or treatment area.

11. Tables listing number and type of major components with approximate dimensions.

12. Tables giving preliminary mass balances.

13. Site safety and security provisions (e.g., fences, fire control, etc.).

Describe the wastes generated by the construction of the interim measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed.

15. Required Permits

List and describe the permits needed to construct the interim measure. Indicate on the project schedule when the permit applications will be submitted to the applicable agencies and an estimate of the permit issuance date.
16. Sampling and monitoring activities may be needed for design and during construction of the interim measure. If sampling activities are necessary, the IM Workplan must include a complete sampling and analysis section which specifies the following information:

a. Description and purpose of monitoring tasks;

b. Data quality objectives;

c. Analytical test methods and detection limits;

d. Name of analytical laboratory;

e. Laboratory quality control (include laboratory QA/QC procedures in appendices)

f. Sample collection procedures and equipment;

g. Field quality control procedures:
 ▪ duplicates (10% of all field samples)
 ▪ blanks (field, equipment, etc.)
 ▪ equipment calibration and maintenance
 ▪ equipment decontamination
 ▪ sample containers
 ▪ sample preservation
 ▪ sample holding times (must be specified)
 ▪ sample packaging and shipment
 ▪ sample documentation (field notebooks, sample labeling, etc);

h. Criteria for data acceptance and rejection;

i. Schedule of monitoring frequency.

The Owner/Operator or Respondent shall follow all Department and USEPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document.

17. Appendices including:

Design Data - Tabulations of significant data used in the design effort;

Equations - List and describe the source of major equations used in the design process;
Sample Calculations - Present and explain one example calculation for significant calculations; and Laboratory or Field Test Results.
B. **Interim Measures Operation and Maintenance Plan**

The Owner/Operator or Respondent shall prepare an Interim Measures Operation and Maintenance (O&M) Plan that includes a strategy and procedures for performing operations, maintenance, and monitoring of the interim measure(s). An Interim Measures Operation and Maintenance Plan shall be submitted to the Department simultaneously with the Plans and Specifications. The O&M plan shall, at a minimum, include the following elements:

1. **Purpose/Approach**

 Describe the purpose of the document and provide a summary of the project.

2. **Project Management**

 Describe the levels of authority and responsibility (include organization chart), lines of communication and a description of the qualifications of key personnel who will operate and maintain the interim measure(s) (including contractor personnel).

3. **System Description**

 Describe the interim measure and identify significant equipment.

4. **Personnel Training**

 Describe the training process for O&M personnel. The Owner/Operator or Respondent shall prepare, and include in the technical specifications governing treatment systems, contractor requirements for providing: appropriate service visits by experienced personnel to supervise the installation, adjustment, start up and operation of the treatment systems, and training covering appropriate operational procedures once the start-up has been successfully accomplished.

5. **Start-Up Procedures**

 Describe system start-up procedures including any operational testing.

6. **Operation and Maintenance Procedures**

 Describe normal operation and maintenance procedures including:

 a. Description of tasks for operation;
b. Description of tasks for maintenance;

c. Description of prescribed treatment or operation condition;

d. Schedule showing frequency of each O&M task.

7. Replacement schedule for equipment and installed components.

8. Waste Management Practices

Describe the wastes generated by operation of the interim measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed.

9. Sampling and monitoring activities may be needed for effective operation and maintenance of the interim measure. If sampling activities are necessary, the O&M plan must include a complete sampling and analysis section which specifies the following information:

a. Description and purpose of monitoring tasks;

b. Data quality objectives;

c. Analytical test methods and detection limits;

d. Name of analytical laboratory;

e. Laboratory quality control (include laboratory QA/QC procedures in appendices)

f. Sample collection procedures and equipment;

g. Field quality control procedures:
 - duplicates (10% of all field samples)
 - blanks (field, equipment, etc.)
 - equipment calibration and maintenance
 - equipment decontamination
 - sample containers
 - sample preservation
 - sample holding times (must be specified)
 - sample packaging and shipment
 - sample documentation (field notebooks, sample labeling, etc);

h. Criteria for data acceptance and rejection;

i. Schedule of monitoring frequency.
The Owner/Operator or Respondent shall follow all Department and USEPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document.

10. O&M Contingency Procedures:

 a. Procedures to address system breakdowns and operational problems including a list of redundant and emergency back-up equipment and procedures;

 b. Should the interim measure suffer complete failure, specify alternate procedures to prevent release or threatened releases of hazardous substances, pollutants or contaminants which may endanger public health and/or the environment or exceed cleanup standards; and

 c. The O&M Plan must specify that, in the event of a major breakdown and/or complete failure of the interim measure (includes emergency situations), the Owner/Operator or Respondent will orally notify the Department within 24 hours of the event and will notify the Department in writing within 72 hours of the event. The written notification must, at a minimum, specify what happened, what response action is being taken and/or is planned, and any potential impacts on human health and the environment.

11. Data Management and Documentation Requirements

Describe how analytical data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data.

The O&M Plan shall specify that the Owner/Operator or Respondent collect and maintain the following information:

 a. Progress Report Information
 ▪ Work Accomplishments (e.g., performance levels achieved, hours of treatment operation, treated and/or excavated volumes, concentration of contaminants in treated and/or excavated volumes, nature and volume of wastes generated, etc.).
 ▪ Record of significant activities (e.g., sampling events, inspections, problems encountered, action taken to rectify problems, etc.).
b. Monitoring and laboratory data;

c. Records of operating costs;

d. Personnel, maintenance and inspection records.

The Department may require that the Owner/Operator or Respondent submit additional reports that evaluate the effectiveness of the interim measure in meeting the stabilization goal.
C. IM Plans and Specifications

The Owner/Operator or Respondent shall prepare Plans and Specifications for the interim measure that are based on the conceptual design but include additional detail. The Plans and Specifications shall be submitted to the Department simultaneously with the Operation and Maintenance Plan. The design package must include drawings and specifications needed to construct the interim measure. Depending on the nature of the interim measure, many different types of drawings and specifications may be needed. Some of the elements that may be required are:

- General Site Plans
- Process Flow Diagrams
- Mechanical Drawings
- Electrical Drawings
- Structural Drawings
- Piping and Instrumentation Diagrams
- Excavation and Earthwork Drawings
- Equipment Lists
- Site Preparation and Field Work Standards
- Preliminary Specifications for Equipment and Material

General correlation between drawings and technical specifications is a basic requirement of any set of working construction plans and specifications. Before submitting the project specifications to the Department, the Owner/Operator or Respondent shall:

1. Proofread the specifications for accuracy and consistency with the conceptual design; and

2. Coordinate and cross-check the specifications and drawings.
ATTACHMENT C

SCOPE OF WORK FOR A HEALTH AND SAFETY PLAN

Objectives

Describe the goals and objectives of the Health and Safety Plan (must apply to on-site personnel and visitors). The Health and Safety Plan must be consistent with the facility Contingency Plan, OSHA Regulations, NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (1985), all state and local regulations and other Implementing Agency guidance as provided.

Hazard Assessment

List and describe the potentially hazardous substances that could be encountered by field personnel during different phases of the activities.

Discuss the following:

- Inhalation Hazards
- Dermal Exposure
- Ingestion Hazards
- Physical Hazards
- Overall Hazard Rating

Include a table that, at a minimum, lists: Known Contaminants, Highest Observed Concentration, Media, Symptoms/Effects of Acute Exposure.

Personal Protection/monitoring Equipment

For each task, describe personal protection levels and identify all monitoring equipment.

Describe any action levels and corresponding response actions (i.e., when will levels of safety be upgraded).

Describe decontamination procedures and areas.

Site organization and Emergency Contacts

List and identify all contacts (include phone numbers). Identify the nearest hospital and provide a regional map showing the shortest route from the facility to the hospital. Describe site emergency procedures and any site safety organizations. Include evacuation procedures for neighbors (where applicable). Include a facility map showing emergency station locations (e.g., first aid, eye wash areas, etc.).
ATTACHMENT D

COMMUNITY PROFILE OUTLINE

The following items should be included in the Community Profile:

SITE DESCRIPTION

Description of proposed project.

Map.

Description of the site/facility location.

Description of the surrounding land uses and environmental resources (including proximity to residential housing, schools, churches, etc.).

Visibility of the site to neighbors.

Demographics of community in which the site is located (e.g., socioeconomic level, ethnic composition, specific language considerations, etc.). This information may be found in local libraries (e.g., census records).

LOCAL INTEREST

Contacts with community members - any inquiries from community members, groups, organizations, etc. (include names, phone numbers, and addresses on the key contact list).

Community interactions - any current meetings, events, presentations, etc.

Media coverage - any newspaper, magazine, television, etc., coverage.

Government contacts - city and county staff, state and local elected officials.

KEY CONTACT LIST

Names, addresses, and phone numbers of city manager, city/county planning department staff, local elected officials, and other community members with whom previous contact has been made.

PAST PUBLIC INVOLVEMENT ACTIVITIES

Any ad hoc committees, community meetings, workshops, letters, newsletters, etc., about the site or similar activity.
KEY ISSUES AND CONCERNS

Any specific concerns/issues raised by the community regarding the site/facility or any activities performed on the site/facility.

Any anticipated concerns/issues regarding the site/facility.

Any general environmental concerns/issues in the community.

PP Review ____________________________ Date___________________
SCOPE OF WORK FOR A CORRECTIVE MEASURES STUDY

PURPOSE

The purpose of the Corrective Measures Study (CMS) is to:

- Develop and evaluate corrective measure alternatives (or a single corrective measure) that may be taken at the Facility to address releases of hazardous wastes (including hazardous constituents); and
- Recommend the corrective measures to be taken at the Facility that are protective of human health and the environment.

SCOPE

A Corrective Measures Study Workplan and Corrective Measures Study Report are, unless otherwise specified by the Department of Toxic Substances Control (Department), required elements of the CMS. The Scope of Work (SOW) for the Corrective Measures Study Workplan and Report describe what should be included in each document. The SOW's are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that sections of a plan and/or report are not needed in the given site specific situation, then the Department may waive that requirement.

The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOW's in order to support the CMS. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks. The SOW for the Corrective Measures Study Workplan and Report are specified below:

A. Corrective Measures Study Workplan

The Corrective Measures Study (CMS) Workplan shall, at a minimum, include the following elements:

1. A description of the overall purpose of the Corrective Measure Study;
2. Corrective measure objectives including proposed media cleanup standards (promulgated federal and state standards, risk derived standards) and points of compliance;
3. A description of the specific corrective measure technologies and/or corrective measure alternatives which will be studied;

4. A description of the general approach to investigating and evaluating potential corrective measures;

5. A summary description of any proposed pilot, laboratory and/or bench scale studies. Proposed studies must be further detailed in either the CMS Workplan or in separate workplans. Submittal times for separate workplans must be included in the CMS Workplan project schedule;

6. A proposed outline for the CMS Report including a description of how information will be presented;

7. A description of overall project management including overall approach, levels of authority (include organization chart), lines of communication, budget and personnel. Include a description of qualifications for personnel directing or performing the work; and

8. A project schedule that specifies all significant steps in the process and when key documents (e.g., CMS Report) are to be submitted to the Department.

B. Corrective Measures Study Report

The Corrective Measures Study (CMS) Report shall, at a minimum, include the following elements:

1. Introduction/Purpose

Describe the purpose and intent of the document.

2. Description of Current Conditions

The Owner/Operator or Respondent shall include a brief discussion of any new information that has been developed since the RCRA Facility Investigation Report was finalized. This discussion should concentrate on those issues which could significantly affect the evaluation and selection of the corrective measure alternative(s).

3. Corrective Action Objectives

The Owner/Operator or Respondent shall propose corrective action objectives including applicable media cleanup standards. The corrective action objectives must be based on available promulgated federal and
state cleanup standards, risk derived standards, data and information
gathered during the corrective action process (e.g., from interim
measures, RCRA Facility Investigation, etc.), and/or other applicable
guidance documents. If no specific standards exist for a given
contaminant and media, the Owner/Operator or Respondent shall propose
and justify a media cleanup standard. The Department may require that
the Owner/Operator or Respondent conduct a risk assessment to develop
appropriate cleanup standards.

4. Identification and Screening of Corrective Measure Technologies

a. Identification

List and briefly describe potentially applicable technologies for each
affected media that may be used to achieve the corrective action
objectives. The Owner/Operator or Respondent should consider including
a table that summarizes the available technologies.

The Owner/Operator or Respondent should consider innovative treatment
technologies, especially in situations where there are a limited number of
applicable corrective measure technologies. Innovative technologies are
defined as those technologies for source control other than incineration,
solidification/stabilization and pumping with conventional treatment for
contaminated groundwater. Innovative treatment technologies may
require extra initial effort to gather information, analyze options and to
adapt the technology to site specific situations. However, in the long run,
innovative treatment technologies could be more cost effective. Pilot,
laboratory and/or bench scale studies are useful for evaluating innovative
treatment technologies. Depending on the site-specific situation, the
Department may require the Owner/Operator or Respondent to consider
additional technologies.

b. Screening

Technologies must be screened to eliminate those that may prove
unfeasible to implement given the existing set of waste and site-
specific conditions. The screening is accomplished by evaluating
technology limitations (e.g., for volume, area, contaminant
concentrations, interferences, etc.) and using contaminant and site
characterization information from the RCRA Facility Investigation to
screen out technologies that cannot be fully implemented at the
facility. The screening process must focus on eliminating those
technologies which have severe limitations for a given set of waste
and site-specific conditions (e.g., depth to groundwater and
aquitards). As with all decisions during the CMS, the screening of
technologies must be fully documented. This is especially true if the screening step indicates that only one corrective action technology should proceed to the next step and be evaluated in detail. List the corrective action technologies selected for further evaluation. Also document the reasons for excluding any corrective action technologies. The Owner/Operator or Respondent should consider including a table that summarizes the findings.

5. Corrective Measure Alternative Development

Assemble the technologies that pass the screening step into specific alternatives that have potential to meet the corrective action objectives. Options for addressing less complex sites could be relatively straightforward and may only require evaluation of a single or limited number of alternatives.

Each alternative may consist of an individual technology or a combination of technologies used in sequence (e.g., treatment train). Depending on the site specific situation, different alternatives may be considered for separate areas of the facility. List and briefly describe each corrective measure alternative.

6. Evaluation of Corrective Measure Alternatives

Each corrective measure alternative must be evaluated (including its components) based on Short- and Long-Term Effectiveness, Reduction of Toxicity, Mobility and/or Volume, Long Term Reliability, Implement ability, and Preliminary Cost.

a. Short-and Long-Term Effectiveness

Each corrective measure alternative must be evaluated for effectiveness in protecting human health and the environment and meeting the corrective action objectives. Both short- and long-term components of effectiveness must be evaluated; short-term referring to the construction and implementation period, and long-term referring to the period after the remedial action is complete. Estimate approximately how much time it will take to implement each corrective measure alternative, how much time to see initial beneficial results, and how much time to achieve the corrective action objectives.

The evaluation of short-term effectiveness must include possible threats to the safety of nearby communities, workers, and
environmentally sensitive areas (e.g., oceans, wetlands) during construction of the corrective measure alternative. Factors to consider are fire, explosion, exposure to hazardous substances and potential threats associated with treatment, excavation, transportation and re-disposal or containment of waste material. Laboratory and/or field studies are extremely useful in estimating the effectiveness of corrective measures and should be used whenever possible.

The evaluation of long-term effectiveness must include possible threats to the safety of nearby communities, workers, and environmentally sensitive areas (e.g., oceans, wetlands) during operation of the corrective measure alternative.

b. Reduction of Toxicity, Mobility and/or Volume

Each corrective measure alternative must be evaluated for its ability to reduce the toxicity, mobility, and/or volume of the contaminated media. Reduction in toxicity, mobility, and/or volume refers to changes in one or more characteristics of the contaminated media by the use of corrective measures that decrease the inherent threats associated with the media.

Estimate how much the corrective measure alternative will reduce the waste toxicity, volume and/or mobility (compare initial site conditions to post-corrective measure conditions). In general, corrective measures that have a high degree of permanence and reduce the contaminant toxicity, mobility and volume through treatment.

c. Long-Term Reliability

Each corrective measure alternative must be evaluated as to its long-term reliability. This evaluation includes consideration of operation and maintenance requirements.

Demonstrated and expected reliability is a way of assessing the risk and effect of failure. Discuss whether the technology or combination of technologies have been used effectively together under analogous site conditions, whether failure of any one technology in the alternative has an impact on receptors or contaminant migration, and whether the alternative would have the flexibility to deal with uncontrollable changes at the site (e.g., heavy rain storms, earthquakes, etc).
Operation and maintenance requirements include the frequency and complexity of necessary operation and maintenance. Technologies requiring frequent or complex operation and maintenance activities should be regarded as less reliable than technologies requiring little or straightforward operation and maintenance. The availability of labor and materials to meet these requirements must also be considered.

Most corrective measure technologies, with the exception of destruction, deteriorate with time. Often, deterioration can be slowed through proper system operation and maintenance, but the technology eventually may require replacement. Each corrective measure alternative shall be evaluated in terms of the projected useful life of the overall alternative and of its component technologies. Useful life is defined as the length of time the necessary or required level of effectiveness can be maintained.

d. Implementability of Corrective Measure Alternatives

The implementability criterion addresses the technical and administrative feasibility of implementing a corrective measure alternative and the availability of various services and materials needed during implementation. Each corrective measure alternative must be evaluated using the following criteria:

Construction and Operation: Corrective measure alternatives must be feasible to implement given the existing set of waste and site-specific conditions. This evaluation was initially done for specific technologies during the screening process and is addressed again in this detailed analysis of the alternative as a whole. It is not intended that the screening process be repeated here, but instead to highlight key differences and/or changes from the screening analysis that may result from combining technologies.

Administrative Feasibility: Discuss the administrative activities needed to implement the corrective measure alternative (e.g., permits, public acceptance, rights of way, off-site approvals, etc.).

Availability of Services and Materials: Discuss the availability of adequate off-site treatment, storage capacity, disposal services, needed technical services and materials, and the availability of prospective technologies for each corrective measure alternative.

e. Preliminary Cost Estimates
Develop a preliminary cost estimate for each corrective measure alternative (and for each phase or segment of the alternative). The cost estimate shall include both capital and operation and maintenance costs. Include a description of how the costs were estimated and what assumptions were used.

- The preliminary capital cost estimate must consider all key costs including, at a minimum, costs for engineering, mobilization, demobilization, site preparation, construction, materials, labor, equipment purchase and rental, sampling, analysis, waste disposal, permitting and health and safety measures.

- The preliminary operation and maintenance cost estimate must consider all key costs including, at a minimum, costs for labor, training, sampling, analysis, maintenance materials, utilities, waste disposal, waste treatment, permitting and health and safety measures.

- Calculate the net present value of preliminary capital and operation and maintenance costs for each corrective measure alternative.

7. Recommendation and Justification of the Corrective Measure Alternative

The Owner/Operator or Respondent shall recommend and justify a corrective measure alternative using the five criteria specified in Section 6. This recommendation shall include summary tables which allow the alternative or alternatives to be easily understood. Tradeoffs among implement ability, effectiveness, reliability, and other pertinent factors shall be highlighted.

In addition, the recommended corrective measure alternative(s) must meet the following corrective action standards:

a. Protect human health and the environment.

b. Attain corrective action objectives including media cleanup standards.

c. Control the source(s) of releases so as to reduce or eliminate, to the extent practicable, further releases of hazardous wastes (including hazardous constituents) that may pose a threat to human health and the environment.
d. Comply with any applicable federal, state, and local standards for management of wastes.

The Owner/Operator or Respondent must document how the recommended alternative meets the corrective action standards (a-d above).

8. Summary of Recommended Corrective Measure Alternative

Provide a description of the recommended corrective measure alternative and qualitatively describe what the alternative is supposed to do and how it will function at the facility.
PURPOSE

The purpose of the Corrective Measures Implementation (CMI) program is to design, construct, operate, maintain and monitor the performance of the corrective measure or measures selected by the Department. Corrective measures are intended to protect human health and/or the environment from hazardous waste releases from the Facility. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to implement the corrective measures program.

SCOPE

The documents required for Corrective Measures Implementation are, unless the Department of Toxic Substances Control (Department) specifies otherwise, a Conceptual Design, Operation and Maintenance Plan, Draft Plans and Specifications, Final Plans and Specifications, Construction Workplan, Construction Completion Report, Corrective Measure Completion Report, Health and Safety Plan and Progress Reports. The scope of work (SOW) for each document is specified below. The SOW's are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that a plan and/or report or portions thereof are not needed in the given site specific situation, then the Department may waive that requirement.

The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOW's in order to support the CMI program. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks.

A. Conceptual Design

The Owner/Operator or Respondent shall prepare a Conceptual Design (CD) that clearly describes the size, shape, form, and content of the proposed corrective measure, the key components or elements that are needed, describes the designer’s vision of the corrective measure in the form of conceptual drawings and schematics, and includes procedures and schedules for implementing the corrective measure(s).

It should be noted that more than one conceptual design may be needed in situations where there is a complex site with multiple technologies being
employed at different locations. The CD must be approved by the Department prior to implementation. The CD must, at a minimum, include the following elements:

1. **Introduction/Purpose**

 Describe the purpose of the document and provide a summary description of the project.

2. **Corrective Measure Objectives**

 Discuss the corrective measure objectives including applicable media cleanup standards.

3. **Conceptual Model of Contaminant Migration**

 It is important to know where the contaminants are and to understand how they are moving before an adequate corrective measure can be developed. To address this critical question, the Owner/Operator or Respondent must present a conceptual model of the site and contaminant migration. The conceptual model consists of a working hypothesis of how the contaminants may move from the release source to the receptor population. The conceptual model is developed by looking at the applicable physical parameters (e.g., water solubility, density, Henry's Law Constant, etc.) for each contaminant and assessing how the contaminant may migrate given the existing site conditions (geologic features, depth to groundwater, etc.). Describe the phase (water, soil, gas, non-aqueous) and location where contaminants are likely to be found. This analysis may have already been done as part of earlier work (e.g., Current Conditions Report). If this is the case, then provide a summary of the conceptual model with a reference to the earlier document;

4. **Description of Corrective Measures**

 Considering the conceptual model of contaminant migration, qualitatively describe what the corrective measure is supposed to do and how it will function at the Facility. Discuss the constructability of the corrective measure and its ability to meet the corrective measure objectives.

5. **Data Sufficiency**
Review existing data needed to support the design effort and establish whether or not there are sufficient accurate data available for this purpose. The Owner/Operator or Respondent must summarize the assessment findings and specify any additional data needed to complete the corrective measure design. The Department may require or the Owner/Operator or Respondent may propose that sampling and analysis plans and/or treatability study workplans be developed to obtain the additional data. Submittal times for any new sampling and analysis plans and/or treatability study workplans must be included in the project schedule.

6. Project Management

Describe the management approach including levels of authority and responsibility (include organization chart), lines of communication and the qualifications of key personnel who will direct the corrective measure design and implementation effort (including contractor personnel).

7. Project Schedule

The project schedule must specify all significant steps in the process and when all CMI deliverables (e.g., Operation and Maintenance Plan, Corrective Measure Construction Workplan, etc.) are to be submitted to the Department.

8. Design Criteria

Specify performance requirements for the overall corrective measure and for each major component. The Owner/Operator or Respondent must select equipment that meets the performance requirements.

9. Design Basis

Discuss the process and methods for designing all major components of the corrective measure. Discuss the significant assumptions made and possible sources of error. Provide justification for the assumptions;

11. Site plan showing preliminary plant layout and/or treatment area.
12. Tables listing number and type of major components with approximate dimensions.

13. Tables giving preliminary mass balances.

14. Site safety and security provisions (e.g., fences, fire control, etc.).

15. Waste Management Practices

Describe the wastes generated by the construction of the corrective measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed;

16. Required Permits

List and describe the permits needed to construct and operate the corrective measure. Indicate on the project schedule when the permit applications will be submitted to the applicable agencies and an estimate of the permit issuance date.

17. Long-Lead Procurement Considerations

The Owner/Operator or Respondent shall prepare a list of any elements or components of the corrective measure that will require custom fabrication or for some other reason must be considered as long-lead procurement items. The list must include the reason why the items are considered long-lead items, the length of time necessary for procurement, and recognized sources of such procurement;

18. Appendices including:

Design Data - Tabulations of significant data used in the design effort;

Equations - List and describe the source of major equations used in the design process;

Sample Calculations - Present and explain one example calculation for significant or unique design calculations.

Laboratory or Field Test Results.
B. **Operation and Maintenance Plan**

The Owner/Operator or Respondent shall prepare an Operation and Maintenance (O&M) Plan that includes a strategy and procedures for performing operations, long term maintenance, and monitoring of the corrective measure. A draft Operation and Maintenance Plan shall be submitted to the Department simultaneously with the draft Plans and Specifications. A final Operation and Maintenance Plan shall be submitted to the Department simultaneously with the final Plans and Specifications. The O&M plan shall, at a minimum, include the following elements:

1. **Introduction/Purpose**

 Describe the purpose of the document and provide a summary description of the project.

2. **Project Management**

 Describe the management approach including levels of authority and responsibility (include organization chart), lines of communication and the qualifications of key personnel who will operate and maintain the corrective measures (including contractor personnel);

3. **System Description**

 Describe the corrective measure and identify significant equipment.

4. **Personnel Training**

 Describe the training process for O&M personnel. The Owner/Operator or Respondent shall prepare, and include in the technical specifications governing treatment systems, contractor requirements for providing: appropriate service visits by experienced personnel to supervise the installation, adjustment, start up and operation of the treatment systems, and training covering appropriate operational procedures once the start-up has been successfully accomplished.

5. **Start-Up Procedures**

 Describe system start-up procedures including any operational testing.
6. Operation and Maintenance Procedures

Describe normal operation and maintenance procedures including:

a. Description of tasks for operation;
b. Description of tasks for maintenance;
c. Description of prescribed treatment or operation conditions.
d. Schedule showing frequency of each O&M task.

7. Replacement schedule for equipment and installed components.

8. Waste Management Practices

Describe the wastes generated by operation of the corrective measure and how they will be managed. Also discuss drainage and indicate how rainwater runoff will be managed.

9. Sampling and monitoring activities may be needed for effective operation and maintenance of the corrective measure. If sampling activities are necessary, the O&M plan must include a complete sampling and analysis section which specifies the following information:

a. Description and purpose of monitoring tasks;
b. Data quality objectives;
c. Analytical test methods and detection limits;
d. Name of analytical laboratory;
e. Laboratory quality control (include laboratory QA/QC procedures in appendices)
f. Sample collection procedures and equipment;
g. Field quality control procedures:
 - duplicates (10% of all field samples)
 - blanks (field, equipment, etc.)
 - equipment calibration and maintenance
 - equipment decontamination
 - sample containers
 - sample preservation
 - sample holding times (must be specified)
 - sample packaging and shipment
- sample documentation (field notebooks, sample labeling, etc);

h. Criteria for data acceptance and rejection; and

i. Schedule of monitoring frequency.

The Owner/Operator or Respondent shall follow all EPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document.

10. Corrective Measure Completion Criteria

Describe the process and criteria (e.g., groundwater cleanup goal met at all compliance points for 1 year) for determining when corrective measures may cease. Also describe the process and criteria for determining when maintenance and monitoring may cease. Criteria for corrective measures such as a landfill cap must be carefully crafted to account for the fact that a landfill cap will never actually "cease" but will need to be maintained and monitored for a long period of time. Satisfaction of the completion criteria will trigger preparation and submittal of the Corrective Measures Completion Report.

11. O&M Contingency Procedures:

a. Procedures to address system breakdowns and operational problems including a list of redundant and emergency backup equipment and procedures;

b. Should the corrective measure suffer complete failure, specify alternate procedures to prevent release or threatened releases of hazardous substances, pollutants or contaminants which may endanger public health and/or the environment or exceed cleanup standards;

c. The O&M Plan must specify that, in the event of a major breakdown and/or complete failure of the corrective measure (includes emergency situations), the Owner/Operator or Respondent will orally notify the Department within 24 hours of the event and will notify the Department in writing within 72 hours of the event. The written notification must, at a minimum, specify what happened, what response action is being taken and/or is planned, and any potential impacts on human health and/or the environment;
d. Procedures to be implemented in the event that the corrective measure is experiencing major operational problems, is not performing to design specifications and/or will not achieve the cleanup goals in the expected timeframe. For example, in certain circumstances both a primary and secondary corrective measure may be selected for the Facility. If the primary corrective measure were to fail, then the secondary would be implemented. This section would thus specify that if the primary corrective measure failed, then design plans would be developed for the secondary measure.

12. Data Management and Documentation Requirements

Describe how analytical data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data.

The O&M Plan shall specify that the Owner/Operator or Respondent collect and maintain the following information:

a. Progress Report Information

 - Work Accomplishments (e.g., performance levels achieved, hours of treatment operation, treated and/or excavated volumes, concentration of contaminants in treated and/or excavated volumes, nature and volume of wastes generated, etc.).
 - Record of significant activities (e.g., sampling events, inspections, problems encountered, action taken to rectify problems, etc.).

b. Monitoring and laboratory data;

c. Records of operating costs; and

d. Personnel, maintenance and inspection records.

This data and information should be used to prepare Progress Reports and the Corrective Measure Completion Report.
C. Draft Plans and Specifications

The Owner/Operator or Respondent shall prepare draft Plans and Specifications that are based on the Conceptual Design but include additional design detail. A draft Operation and Maintenance Plan and Construction Workplan shall be submitted to the Department simultaneously with the draft Plans and Specifications. The draft design package must include drawings and specifications needed to construct the corrective measure. Depending on the nature of the corrective measure, many different types of drawings and specifications may be needed. Some of the elements that may be required are:

- General Site Plans
- Process Flow Diagrams
- Mechanical Drawings
- Electrical Drawings
- Structural Drawings
- Piping and Instrumentation Diagrams
- Excavation and Earthwork Drawings
- Equipment Lists
- Site Preparation and Field Work Standards
- Preliminary Specifications for Equipment and Material

General correlation between drawings and technical specifications is a basic requirement of any set of working construction plans and specifications. Before submitting the project specifications to the Department, the Owner/Operator or Respondent shall:

a. Proofread the specifications for accuracy and consistency with the conceptual design; and

b. Coordinate and cross-check the specifications and drawings.
D. Final Plans and Specifications (100% Design Point)

The Owner/Operator or Respondent shall prepare final Plans and Specifications that are sufficient to be included in a contract document and be advertised for bid. A final Operation and Maintenance Plan and Construction Workplan shall be submitted to the Department simultaneously with the final Plans and Specifications. The final design package must consist of the detailed drawings and specifications needed to construct the corrective measure. Depending on the nature of the corrective measure, many different types of drawings and specifications may be needed. Some of the elements that may be required are:

- General Site Plans
- Process Flow Diagrams
- Mechanical Drawings
- Electrical Drawings
- Piping and Instrumentation Diagrams
- Structural Drawings
- Excavation and Earthwork Drawings
- Site Preparation and Field Work Standards
- Construction Drawings
- Installation Drawings
- Equipment Lists
- Detailed Specifications for Equipment and Material

General correlation between drawings and technical specifications is a basic requirement of any set of working construction plans and specifications. Before submitting the final project specifications to the Department, the Owner/Operator or Respondent shall:

1. Proofread the specifications for accuracy and consistency with the preliminary design; and

2. Coordinate and cross-check the specifications and drawings.
E. Construction Workplan

The Owner/Operator or Respondent shall prepare a Construction Workplan which documents the overall management strategy, construction quality assurance procedures and schedule for constructing the corrective measure. A draft Construction Workplan shall be submitted to the Department simultaneously with the draft Plans and Specifications and draft Operation and Maintenance Plan. A final Construction Workplan shall be submitted to the Department simultaneously with the final Plans and Specifications and final Operation and Maintenance Plan. Upon receipt of written approval from the Department, the Owner/Operator or Respondent shall commence the construction process and implement the Construction Workplan in accordance with the schedule and provisions contained therein. The Construction Workplan must be approved by the Department prior to the start of corrective measure construction. The Construction Workplan must, at a minimum, include the following elements:

1. Introduction/Purpose

Describe the purpose of the document and provide a summary description of the project.

2. Project Management

Describe the construction management approach including levels of authority and responsibility (include organization chart), lines of communication and the qualifications of key personnel who will direct the corrective measure construction effort and provide construction quality assurance/quality control (including contractor personnel);

3. Project Schedule

The project schedule must include timing for key elements of the bidding process, timing for initiation and completion of all major corrective measure construction tasks as specified in the Final Plans and Specifications, and specify when the Construction Completion Report is to be submitted to the Department;

4. Construction Quality Assurance/Quality Control Program

The purpose of construction quality assurance is to ensure, with a reasonable degree of certainty, that a completed corrective measure will meet or exceed all design criteria, plans and
specifications. The Construction Workplan must include a complete construction quality assurance program to be implemented by the Owner/Operator or Respondent.

5. Waste Management Procedures

Describe the wastes generated by construction of the corrective measure and how they will be managed.

6. Sampling and Analysis

Sampling and monitoring activities may be needed for construction quality assurance/quality control and/or other construction related purposes. If sampling activities are necessary, the Construction Workplan must include a complete sampling and analysis section which specifies the following information:

a. Description and purpose of monitoring tasks;

b. Data quality objectives;

c. Analytical test methods and detection limits;

d. Name of analytical laboratory;

e. Laboratory quality control (include laboratory QA/QC procedures in appendices)

f. Sample collection procedures and equipment;

g. Field quality control procedures:
 ▪ duplicates (10% of all field samples)
 ▪ blanks (field, equipment, etc.)
 ▪ equipment calibration and maintenance
 ▪ equipment decontamination
 ▪ sample containers
 ▪ sample preservation
 ▪ sample holding times (must be specified)
 ▪ sample packaging and shipment
 ▪ sample documentation (field notebooks, sample labeling, etc);

h. Criteria for data acceptance and rejection; and

i. Schedule of monitoring frequency.
The Owner/Operator or Respondent shall follow all Department and USEPA guidance for sampling and analysis. The Department may request that the sampling and analysis section be a separate document.

7. Construction Contingency Procedures

 a. Changes to the design and/or specifications may be needed during construction to address unforeseen problems encountered in the field. Procedures to address such circumstances, including notification of the Department, must be included in the Construction Workplan;

 b. The Construction Workplan must specify that, in the event of a construction emergency (e.g., fire, earthwork failure, etc.), the Owner/Operator or Respondent will orally notify the Department within 24 hours of the event and will notify the Department in writing within 72 hours of the event. The written notification must, at a minimum, specify what happened, what response action is being taken and/or is planned, and any potential impacts on public health and/or the environment; and

 c. Procedures must be implemented if unforeseen events prevent corrective measure construction. For example, in certain circumstances both a primary and secondary corrective measure may be selected for the Facility. If the primary corrective measure could not be constructed, then the secondary would be implemented. This section would thus specify that if the primary corrective measure could not be constructed, then design plans would be developed for the secondary measure.

8. Construction safety procedures should be specified in a separate Health and Safety Plan.

9. Data Management and Documentation Requirements

 Describe how analytical data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data.
The Construction Workplan shall specify that the Owner/Operator or Respondent collect and maintain the following information:

a. Progress Report Information
 - Work Accomplishments (e.g., hours of operation, excavated volumes, nature and volume of wastes generated, area of cap completed, length of trench completed, etc.).
 - Record of significant activities (e.g., sampling events, inspections, problems encountered, action taken to rectify problems, etc.).

b. Monitoring and laboratory data;

c. Records of construction costs; and

d. Personnel, maintenance and inspection records.

This data and information should be used to prepare progress reports and the Construction Completion Report.

10. Cost Estimate/Financial Assurance

If financial assurance for corrective measure construction and operation is required by an enforcement order, facility permit, or through use of Department discretion, the Construction Workplan must include a cost estimate; specify which financial mechanism will be used and when the mechanism will be established. The cost estimate shall include both construction and operation and maintenance costs. An initial cost estimate shall be included in the draft Construction Workplan and a final cost estimate shall be included in the final Construction Workplan. The financial assurance mechanism may include a performance or surety bond, a trust fund, a letter of credit, financial test and corporate guarantee equivalent to that in 40 CFR 265.143 or any other mechanism acceptable to the Department.

Financial assurance mechanisms are used to assure the Department that the Owner/Operator or Respondent has adequate financial resources to construct and operate the corrective measure.
F. Construction Completion Report

The Owner/Operator or Respondent shall prepare a Construction Completion (CC) Report which documents how the completed project is consistent with the Final Plans and Specifications. A CC Report shall be submitted to the Department when the construction and any operational tests have been completed. The CC Report shall, at a minimum, include the following elements:

1. Purpose;

2. Synopsis of the corrective measure, design criteria, and certification that the corrective measure was constructed in accordance with the Final Plans and Specifications;

3. Explanation and description of any modifications to the Final Plans and Specifications and why these were necessary for the project;

4. Results of any operational testing and/or monitoring, indicating how initial operation of the corrective measure compares to the design criteria;

5. Summary of significant activities that occurred during construction. Include a discussion of problems encountered and how they were addressed;

6. Summary of any inspection findings (include copies of key inspection documents in appendices);

7. As built drawings;

8. A schedule indicating when any treatment systems will begin full scale operations.
G. Corrective Measure Completion Report

The Owner/Operator or Respondent shall prepare a Corrective Measure Completion (CMC) Report when the Owner/Operator or Respondent believes that the corrective measure completion criteria have been satisfied. The purpose of the CMC Report is to fully document how the corrective measure completion criteria have been satisfied and to justify why the corrective measure and/or monitoring may cease. The CMC Report shall, at a minimum, include the following elements:

1. Purpose;
2. Synopsis of the corrective measure;
3. Corrective Measure Completion Criteria
 Describe the process and criteria for determining when corrective measures, maintenance and monitoring may cease. Corrective measure completion criteria were given in the final Operation and Maintenance (O&M) Plan;
4. Demonstration that the completion criteria have been met. Include results of testing and/or monitoring, indicating how operation of the corrective measure compares to the completion criteria;
5. Summary of work accomplishments (e.g., performance levels achieved, total hours of treatment operation, total treated and/or excavated volumes, nature and volume of wastes generated, etc.);
6. Summary of significant activities that occurred during operations. Include a discussion of problems encountered and how they were addressed;
7. Summary of inspection findings (include copies of key inspection documents in appendices); and
8. Summary of total operation and maintenance costs.
H. Health and Safety Plan

The Owner/Operator or Respondent must prepare a Health and Safety Plan for construction, operation and maintenance of the corrective measure. The Health and Safety Plan will not be approved by the Department. The Health and Safety Plan must, at a minimum, include the following elements:

1. Objectives

Describe the goals and objectives of the Health and Safety Plan (must apply to on-site personnel and visitors). The Health and Safety Plan must be consistent with the Facility Contingency Plan, Occupational Safety and Health Administration (OSHA) Regulations, NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (1985), all state and local regulations and other Department guidance as provided.

2. Hazard Assessment

List and describe the potentially hazardous substances that could be encountered by field personnel during construction and/or operation and maintenance activities. Discuss the following:

- Inhalation Hazards
- Dermal Exposure
- Ingestion Hazards
- Physical Hazards
- Overall Hazard Rating

Include a table that, at a minimum, lists: known contaminants, highest observed concentration, media, symptoms/effects of acute exposure.

3. Personal Protection/Monitoring Equipment

For each operational task, describe personal protection levels and identify all monitoring equipment. Describe any action levels and corresponding response actions (i.e., when will levels of safety be upgraded). Describe decontamination procedures and areas.

4. Site Organization and Emergency Contacts

List and identify all contacts (include phone numbers). Identify the nearest hospital and provide a regional map showing the shortest
route from the facility to the hospital. Describe site emergency procedures and any site safety organizations. Include evacuation procedures for neighbors (where applicable).

Include a Facility Map showing emergency station locations (first aid, eye wash areas, etc.).
I. **Submittal Summary**

The following list provides a summary of when and how key documents should be submitted to the Department.

1. The submittal schedule for the documents listed below should be included in an enforcement order, permit or otherwise specified by the Department.
 - Conceptual Design

2. The submittal schedule for the documents listed below must be specified in the Conceptual Design. The groupings reflect which documents should be submitted together.
 - Draft Plans and Specifications
 - Draft Operation and Maintenance Plan
 - Draft Construction Workplan
 - Final Plans and Specifications
 - Final Operation and Maintenance Plan
 - Final Construction Workplan
 - Health and Safety Plan

3. The submittal schedule for the document listed below must be specified in the Final Construction Workplan.
 - Construction Completion Report

4. The submittal schedule for the document listed below is based on when the Owner/Operator or Respondent believes the completion criteria have been satisfied.
 - Corrective Measure Completion Report

5. The submittal schedule for Progress Reports shall be bimonthly unless otherwise specified by the Department.
ATTACHMENT G

SCOPE OF WORK FOR PROGRESS REPORTS

The Owner/Operator or Respondent shall provide the Department with signed quarterly progress reports during corrective measure design, construction, operation and maintenance. The Department may adjust the frequency of progress reporting to address site specific needs. For example, more frequent progress reports may be needed to track critical activities such as corrective measure construction and start-up. Progress reports must, at a minimum, include the following elements:

1. A description of significant activities and work completed during the reporting period;

2. Summary of system effectiveness. Provide a comparison of system operation to predicted performance levels (applicable only during operation of the corrective measure);

3. Summaries of all findings (including any inspection results);

4. Summaries of all contacts with representatives of the local community, public interest groups or State government during the reporting period;

5. Summaries of all problems or potential problems encountered during the reporting period;

6. Actions being taken and/or planned to rectify problems;

7. Changes in personnel during the reporting period;

8. Projected work for the next reporting period; and

9. If requested by the Department, the results of any sampling tests and/or other data generated during the reporting period.
<table>
<thead>
<tr>
<th>TASK #</th>
<th>MILESTONE/TASK</th>
<th>HRS</th>
<th>Rate</th>
<th>Rate</th>
<th>Rate</th>
<th>Rate</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corrective Action Consent Agreement (CACA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Preparatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Internal Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Meeting with Respondent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Field work overlaps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Review of RFR Summary Fax Sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Public participation assistance mail out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Corrective Measures Study (CMS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Corrective Measures Implementation (CMS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>California Environmental Quality Act (CEQA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>As required and in addition to what is listed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Previous Workplan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Security Plan/Profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Field work overlap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Project Management/Assurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Program's Corrective Action Consent Agreement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

25,000

Note: Hourly rates effective July 1, 2016 to June 30, 2017. Rates include 13.3% indirect rates for Hazardous Waste Management Program.

Revised: 12/15/2020