INORGANIC CHEMICALS IN GROUND WATER AND SOIL: BACKGROUND CONCENTRATIONS AT CALIFORNIA AIR FORCE BASES.

Philip M. Hunter¹, Brian K. Davis², and Frank Roach³.

¹Air Force Center for Environmental Excellence, Brooks City-Base, Texas, ²Department of Toxic Substances Control, CalEPA, Sacramento, California, and ³San Antonio, Texas.

Presented at: 44th Annual Meeting of the Society of Toxicology New Orleans, Louisiana 10 March 2005

Professional affiliations are listed for contact purposes only. Analysis and conclusions contained herein are solely those of the authors, and do not represent official policy of the Department of Toxic Substances Control.

ABSTRACT

Inorganic chemicals have widespread industrial use and are significant contaminants at many hazardous waste sites and industrial locations. Risk assessment and risk management must differentiate between background (naturally occurring) and anthropogenic inorganic chemicals. This distinction is important for site characterization, determining chemicals of concern, establishing cleanup levels, and long-term monitoring programs. This paper is an update of our 2001 report on background at Air Force bases in California.

The Air Force's Environmental Resources Program Information Management System (ERPIMS) database was searched for uncontaminated sample locations for soil and groundwater at 14 Air Force installations in 10 California counties. Background data for 27 inorganic constituents from 1,307 monitoring well locations yielded as many as 5,071 groundwater samples for individual chemicals, while 3,883 boreholes yielded as many as 10,415 soil samples. Medians, 95th, and 99th percentiles are reported for each chemical. Since statistical analysis of soil data indicated that background levels differed significantly with depth, separate background calculations for soil are presented for three depths (less than 3 feet, between 3 and 15 feet, and greater than 15 feet).

For groundwater, background statistics for each constituent are given without regard to sampling depth. Some inorganic constituents were detected frequently and at levels that exceed important environmental thresholds such as Maximum Contaminant Levels (MCLs) or Action Levels for drinking water. Background 95th percentile levels equal or exceed federal and/or California MCLs for aluminum, antimony, cadmium, chromium, nickel, and thallium. The 95th percentile level for lead exceeds the Action Level of 0.015 mg/L for drinking water measured at the tap. This analysis provides background levels that are representative of California Air Force Bases as a group. The background data in this presentation should not be used to replace local background data, but rather provide important benchmarks by which the adequacy of local data can be judged.

INTRODUCTION

Risk assessment of inorganic chemicals for human and ecological receptors requires the parsing of concentrations and associated risk, into portions attributable to anthropogenic activities and portions that are naturally occurring. Background data can be used in the initial site investigation, for identification of chemicals of potential concern, in remedy selection, and for risk communication to the public. (Current USEPA guidance [2002] recommends including all inorganic chemicals in risk assessment and considering the relative contributions of naturally occurring versus anthropogenic chemicals during risk characterization and risk management.)

Computer algorithms were applied to identify background locations at Air Force Bases (AFBs) in California, based on the absence of organic contaminants. This paper presents an update, with substantial increases in data, compared to the summaries of background data in groundwater and soil in Hunter and Davis, 2001. Sample sizes increased by over 40% for soil and by almost 200% for groundwater. These results should not be used in lieu of site-specific background concentrations. They can, however, provide a useful perspective for site-specific results.

METHODS

A computer algorithm was constructed to identify background locations at 14 California Air Force bases, using data from 1984 - 2004. The algorithm, using Structured Query Language, searches out all locations that have been sampled for both inorganic and organic chemicals. Sampling locations with organic contamination (at levels greater than twice the method detection limit) are eliminated. The most common 25 organic contaminants in groundwater were used for groundwater and the most common 25 organic chemicals in soil were similarly applied. Upperrange outliers were eliminated for each inorganic constituent based on concentrations that exceeded "far-outside" values in "box and whisker" plots. Upgradient, downgradient, and sidegradient locations were all potential background sampling locations. Substantially more background locations were identified in soil than in groundwater. On average, 50 background well locations and 100 background borehole locations have been identified per AFB.

This analysis is complicated by different analytical laboratories, various sampling strategies, multiple detection limits, diverse hydrogeologic terrains, variability over 3-dimensional space, a variety of types of hazardous waste sites, multiple Air Force bases, and different waste handling practices. These result in the discrimination of background levels across more than one hydrostratigraphic unit or more than one soil horizon. Given the large sample sizes, percentiles are reported without confidence limits. SAS[®] and Systat[®] software generated the statistics shown in the tables. The groundwater data represent dissolved, field-filtered, and total recoverable results.

BACKGROUND ANALYSIS FOR GROUNDWATER

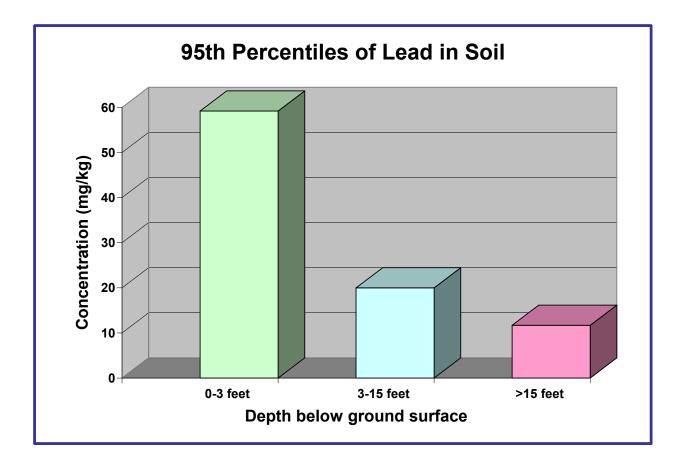
- 1,307 background wells were identified and analyzed from a universe of 6,290 available monitoring wells
- Range of number of Air Force Bases: 5 for boron to 13 for many constituents
- Data are biased, with Vandenberg, Travis and March AFBs representing 75% of the total data
- Range of background wells: 148 for Cr-6 to 1307 for Pb
- Range of sample sizes: 243 for Cr-6 to 5071 for Pb
- Range of detection rates: 2% for Ag to 99.8% for Mg
- Distributions did not fit either a normal or lognormal distribution
- The 95th percentiles for Al, Sb, Cd, Cr, Ni, and Tl exceed the respective MCLs (Maximum Contaminant Levels for drinking water), both California and USEPA; the 95th percentile for Pb exceeds its USEPA Action Level for drinking water

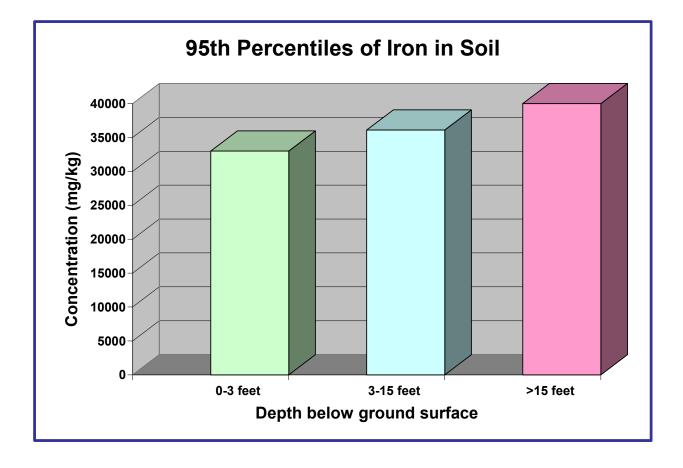
GROUNDWATER DATA FROM AIR FORCE BASES IN CALIFORNIA										
Analyte		Percentile in ug/L				Median Method	Number	Number		
	n	50th	95th	99t h	Detection	Detection	Wells	AF Bases		
Aluminum	3560	100	32,500	118,000	51%	70	968	12		
Antimony	4084	ND	146	190	6%	26	1084	12		
Arsenic	3983	ND	35	140	23%	3	1043	13		
Barium	3680	90	630	2,100	94%	6	1011	13		
Beryllium	4160	ND	ND	5	5%	2	1104	12		
Boron	560	83	1,800	16,000	84%	30	286	5		
Cadmium	4396	ND	6	42	11%	4	1176	13		
Chloride	2184	142,000	1,000,000	3,120,000	99%	500	855	11		
Chromium	4335	ND	810	5,390	37%	5	1157	13		
Chromium-6	243	ND	25	60	36%	4	148	9		
Cobalt	3686	ND	25	95	13%	10	993	12		
Copper	4786	ND	50	220	19%	12	1094	13		
Cyanide	580	ND	12	30	6%	10	269	9		
Fluoride	1005	400	1,300	1,850	90%	100	557	9		
ron	4508	225	41,000	193,000	74%	20	1054	12		
_ead	5071	ND	50	220	16%	4	1307	13		
Magnesium	4731	23,200	153,000	390,000	100%	36	1075	13		
Manganese	4523	46	2,150	5,800	79%	3	1043	12		
Mercury	3599	ND	0.5	3	7%	0.2	965	13		
Molybdenum	3594	ND	79	122	23%	6	958	11		
Nickel	4200	ND	455	1,470	38%	22	1090	13		
Selenium	3861	ND	31	200	12%	5	1027	13		
Silver	4314	ND	15	20	2%	3	1163	13		
Sodium	4719	85,800	588,000	2,080,000	100%	240	1083	13		
Fhallium	3965	ND	200	300	4%	100	1003	12		
/anadium	3497	16	110	464	62%	7	935	12		
Zinc	4835	20	220	990	68%	10	1113	13		

BACKGROUND ANALYSIS FOR SOIL

- 4230 background boreholes were identified and analyzed from a universe of 10,030 available boreholes
- Range of number of Air Force Bases: 2 for Cl to 13 for As
- Data are biased, with Vandenberg, March, and Edwards AFBs representing 50% of the total data
- Range of background boreholes: 126 for Fl to 3,883 for Pb
- Range of sample sizes: 354 for Fl to 10,415 for Pb
- Range of detection rates: 2% for Cn to > 99% for Fe, Mn, Ba, and V
- None of the distributions fit either a normal or lognormal distribution
- The 95th percentiles for As, Fe, Tl, and V exceed their respective USEPA Region 9 Preliminary Remediation Goals (residential, health-based concentrations)

SOIL DATA FROM AIR FORCE BASES IN CALIFORNIA										
Analyte		Percentile (mg/kg)				Median Method	Number	Number		
	n	50th	95th	99th	Detection	Detection Limit	Boreholes	AF Bases		
Aluminum	7473	7,560.0	23,000.0	31,300.0	97%	10.4	3027	12		
Antimony	9065	ND	12.5	25.0	7%	6.3	3522	12		
Arsenic	8665	2.2	12.7	23.2	61%	0.6	3193	13		
Barium	8340	67.3	320.0	584.0	100%	1.0	3218	12		
Beryllium	8242	0.3	1.1	5.6	54%	0.2	3211	12		
Boron	435	44.9	140.0	201.0	93%	3.2	146	3		
Cadmium	9367	ND	2.3	7.7	18%	0.5	3691	12		
Chloride	572	10.2	629.0	1,730.0	94%	0.2	257	2		
Chromium	10051	11.6	49.4	100.0	94%	1.0	3821	12		
Chromium-6	2060	ND	2.0	5.0	10%	0.2	650	9		
Cobalt	7163	5.8	22.0	35.9	85%	1.0	2908	12		
Copper	9441	9.9	53.3	157.0	95%	1.3	3671	12		
Cyanide	1198	ND	0.7	3.0	2%	0.5	525	10		
Fluoride	354	1.1	8.9	23.0	82%	0.5	126	3		
Iron	8003	12,500.0	36,100.0	49,400.0	100%	5.4	3141	12		
Lead	10415	3.1	25.0	148.0	66%	2.0	3883	12		
Magnesium	6985	3,280.0	9,520.0	16,200.0	97%	20.0	2814	11		
Manganese	7964	208.0	823.0	1,600.0	100%	1.0	3122	12		
Mercury	7702	ND	0.3	0.6	10%	0.1	2719	12		
Molybdenum	6967	ND	20.0	44.0	16%	2.0	2752	12		
Nickel	9390	7.1	41.5	85.4	72%	2.2	3633	12		
Selenium	8656	ND	11.0	25.0	7%	0.6	3182	12		
Silver	9669	ND	2.1	6.1	6%	1.0	3727	12		
Sodium	5907	222.0	1,660.0	3,980.0	83%	60.8	3503	11		
Thallium	8639	ND	25.0	173.5	8%	5.0	3352	12		
Vanadium	7971	27.4	88.3	126.0	99%	1.0	3168	12		
Zinc	9981	31.2	104.0	307.0	99%	1.1	3870	12		


VARIABILITY OF SOIL BACKGROUND LEVELS WITH DEPTH


A frequency distribution analysis of sampling depths indicated that the soil sample data could be divided into three horizons of approximately equal sample sizes. These horizons are: 1) surface to 3 feet, 2) 3 feet to 15 feet, and 3) greater than 15 feet. Separate background concentrations by depth were derived for all analytes. No consistent pattern relates concentration and depth. Lead concentrations decrease markedly with depth (95th percentiles are 59.2 mg/kg, 20.0 mg/kg, and 11.7 mg/kg), iron concentrations increase with depth (95th percentiles are 33,000 mg/kg, 36,100 mg/kg, and 40,000 mg/kg), and chromium concentrations are about constant (95th percentiles are 48.9 mg/kg, 49.9 mg/kg, and 49.6 mg/kg).

SOIL DATA FROM SURFACE TO 3 FEET										
		Percentile (mg/kg)			_	Median Method	Number	Number		
Analyte	n	50th	95th	99th	Detection	Detection Limit	Boreholes	AF Bases		
Aluminum	2718	7,615.0	22,100.0	28,400.0	98%	10.1	2042	11		
Antimony	3003	ND	12.0	25.0	9%	6.1	2311	11		
Arsenic	2807	2.4	12.6	23.2	69%	0.5	2051	12		
Barium	2895	74.0	316.0	596.0	100%	1.0	2141	11		
Beryllium	2748	0.3	1.1	2.1	57%	0.2	2112	11		
Boron	105	6.1	116.0	136.0	82%	3.2	93	3		
Cadmium	3101	ND	2.7	10.6	23%	0.5	2362	11		
Chloride	224	7.6	419.0	1,100.0	94%	0.2	169	2		
Chromium	3297	13.3	48.9	144.0	97%	1.0	2482	11		
Chromium-6	560	ND	3.3	5.9	13%	0.2	431	9		
Cobalt	2444	6.0	21.0	34.1	87%	1.0	1847	11		
Copper	3163	11.9	52.7	221.0	97%	1.0	2390	11		
Cyanide	422	ND	0.6	25.5	3%	0.5	354	9		
Fluoride	125	1.0	8.9	18.0	79%	0.5	103	3		
Iron	2797	12,600.0	33,000.0	45,600.0	100%	5.2	2094	10		
Lead	3312	5.2	59.2	348.0	72%	2.0	2414	11		
Magnesium	2436	3,130.0	8,730.0	19,900.0	98%	20.0	1856	10		
Manganese	2790	224.0	810.0	1,400.0	100%	1.0	2082	11		
Mercury	2471	ND	0.2	0.7	13%	0.1	1798	11		
Molybdenum	2373	ND	20.3	44.0	19%	2.0	1785	11		
Nickel	3078	8.3	38.8	127.0	76%	1.5	2345	11		
Selenium	2806	ND	10.5	25.0	9%	0.6	2056	11		
Silver	3251	ND	2.0	10.0	7%	0.6	2452	11		
Sodium	2053	181.0	1,510.0	4,520.0	82%	51.7	1584	10		
Thallium	2886	ND	25.0	169.5	8%	5.0	2210	11		
Vanadium	2802	28.0	88.0	133.0	99%	1.0	2096	11		
Zinc	3341	34.0	125.0	518.0	99%	1.1	2542	11		

SOIL DATA FROM 3 FEET TO 15 FEET									
Analyte		Percentile (mg/kg)				Median Method	Number	Number	
	n	50th	95th	99t h	Detection	Detection Limit	Boreholes	AF Bases	
Aluminum	2961	7,870.0	23,400.0	32,100.0	96%	10.0	1685	11	
Antimony	3306	ND	13.0	30.0	8%	6.1	1940	11	
Arsenic	3145	2.3	15.0	33.9	66%	0.5	1752	11	
Barium	3149	70.4	357.0	624.0	100%	0.5	1765	11	
Beryllium	2897	0.3	1.1	5.9	54%	0.2	1710	11	
Boron	196	50.0	116.0	136.0	99%	3.7	99	3	
Cadmium	3360	ND	2.5	7.7	15%	0.5	1976	11	
Chloride	187	8.9	638.0	2,600.0	96%	0.2	2	2	
Chromium	3637	13.8	49.9	94.0	96%	1.0	2078	11	
Chromium-6	670	ND	2.5	4.4	13%	0.2	397	9	
Cobalt	2647	6.4	20.7	35.0	83%	1.0	1537	11	
Copper	3395	10.4	56.0	167.0	96%	1.0	1948	11	
Cyanide	462	ND	0.6	1.3	1%	0.6	235	8	
Fluoride	130	1.2	9.3	25.0	82%	0.5	77	1	
Iron	3024	13,400.0	36,100.0	47,200.0	100%	5.3	1733	10	
Lead	3862	3.2	20.0	89.0	66%	1.8	2081	12	
Magnesium	2553	3,550.0	9,770.0	15,400.0	93%	20.0	1477	10	
Manganese	3032	207.0	787.0	1,500.0	100%	1.0	1477	11	
Mercury	2863	ND	0.3	0.6	11%	0.1	1635	11	
Molybdenum	2547	ND	21.0	42.0	20%	2.0	1485	11	
Nickel	3425	8.2	41.8	89.3	75%	1.2	1964	11	
Selenium	3228	ND	11.0	48.0	10%	0.5	1803	11	
Silver	3539	ND	2.0	5.0	5%	0.6	2042	11	
Sodium	2305	250.0	1,980.0	4,010.0	88%	40.0	1338	10	
Thallium	3049	ND	25.0	171.5	7%	2.2	1795	11	
Vanadium	3027	28.6	86.0	127.0	100%	1.0	1727	11	
Zinc	3707	31.6	93.2	250.0	99%	1.0	2109	11	

SOIL DATA DEEPER THAN 15 FEET										
Analyte	n	Perce 50th	entile (m 95th	g/kg) 99th	Detection	Median Method Detection Limit	Number Boreholes	Number AF Bases		
Aluminum	1794	7,010.0	23,600.0	34,400.0	96%	11.0	836	12		
Antimony	2756	ND	12.5	18.0	8%	6.6	1096	12		
Arsenic	2713	1.5	10.0	20.0	66%	0.6	1025	12		
Barium	2296	56.5	257.0	493.0	100%	1.1	901	12		
Beryllium	2597	0.3	1.2	5.8	54%	0.2	1034	11		
Boron	134	47.0	147.0	160.0	99%	3.0	62	3		
Cadmium	2906	ND	1.8	4.7	15%	0.5	1170	12		
Chloride	161	17.0	802.0	6,510.0	96%	0.2	95	2		
Chromium	3117	8.0	49.6	88.3	96%	1.1	1205	12		
Chromium-6	830	ND	1.0	4.0	13%	0.1	183	8		
Cobalt	2072	5.0	24.3	38.7	83%	1.1	838	12		
Copper	2883	6.4	51.5	109.0	96%	2.0	1117	12		
Cyanide	314	ND	0.7	1.7	1%	0.5	109	7		
Fluoride	99	1.4	7.3	29.0	82%	0.5	43	1		
Iron	2182	11,100.0	40,000.0	52,800.0	100%	5.6	895	12		
Lead	3241	2.7	11.7	22.5	66%	2.0	1274	12		
Magnesium	1996	3,040.0	9,690.0	13,600.0	93%	21.7	821	11		
Manganese	2142	182.5	930.0	2,010.0	100%	1.1	883	12		
Mercury	2368	ND	0.3	0.4	11%	0.1	877	11		
Molybdenum	2047	ND	20.0	44.0	20%	2.2	833	12		
Nickel	2887	5.0	43.8	68.5	75%	4.1	1146	12		
Selenium	2622	ND	11.5	14.0	10%	0.6	1000	12		
Silver	2879	ND	2.4	5.4	5%	1.0	1127	12		
Sodium	1549	216.0	1,180.0	2,700.0	88%	108.0	718	11		
Thallium	2704	ND	25.0	176.0	7%	5.0	1074	12		
Vanadium	2142	24.4	90.7	120.0	100%	1.1	871	12		
Zinc	2933	27.1	99.6	180.0	99%	2.1	1181	12		

SUMMARY AND CONCLUSIONS

- Computer algorithms identified background locations, based on the absence of organic contamination, for 27 inorganic chemicals in groundwater and soil at California Air Force Bases.
- The 95th percentile is a good representation of background concentration, given the inherent complexities of these large and diverse samples.
- Concentrations of some inorganic chemicals vary considerably by soil depth.
- For some inorganic chemicals the 95th percentile exceeds health-based criteria of concern.
- Concentrations and statistics for the inorganic chemicals have not changed significantly since our previous report (Hunter and Davis, 2001).
- These data provide insight on background variability across a range of environments, but do not necessarily represent all areas of California.
- These results can provide a useful context, but they cannot substitute for site-specific background concentrations.

REFERENCES

California Dept. of Toxic Substances Control, 1997. Selecting Inorganic Constituents as Chemicals of Potential Concern for Risk Assessments at Hazardous Waste Sites and Permitted Facilities. Feb., 1997.

U.S. EPA, 2002. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. OERR 9285.7-41. Sept., 2002.

Hunter, P.M. and Davis, B.K., 2001. Naturally Occurring Concentrations of Inorganic Chemicals at California Air Force Bases. The Toxicologist, Suppl. to Toxicol. Sciences 60:432.

DISCLAIMER

The opinions and findings in this paper are those of the authors. They do not represent guidance or policy of the California Department of Toxic Substances Control, California Environmental Protection Agency, or the U.S. Air Force.