Attachment 7

Waste Management Plan
Waste Management Plan

Phase I Decontamination and Deconstruction Project
Vernon, CA 90058

Prepared for
Exide Technologies
2700 South Indiana Street
Vernon, CA 90058

Prepared by
American Integrated Services, Inc.
1502 E Opp Street
Wilmington, CA 90744

August 18, 2016
Rev November 15, 2016
Rev January 9, 2016
Rev April 21, 2017
Rev May 1, 2017
Rev July 5, 2017
Table of Contents

1.0 Waste Management Plan .. 2
2.0 Decommissioning and Decontamination Activities ... 2
2.1 Asbestos Containing Material (ACM) .. 2
2.2 Universal Waste Item Removal ... 4
 2.2.1 Fluorescent Bulbs and HID Lamps ... 4
 2.2.2 PCB and Non-PCB Ballasts ... 4
 2.2.3 Mercury Containing Items (Thermostats & Mercoid Switches) 4
 2.2.4 Lead Acid Batteries .. 5
 2.2.5 Self-Luminous Exit Signs and/or Smoke Detectors (IF ENCOUNTERED) 5
 2.2.6 Electrical Transformers and/or Motor Control Units .. 5
2.3 Residual Lubricating Oils ... 6
2.4 Residual Chemicals (Liquids, Sludge or Solids) .. 6
2.5 Decon Sediment or Filter Press Byproduct Disposal .. 6
2.6 Refractory Brick ... 7
2.7 Health & Safety PPE Debris ... 7
2.8 Impacted Concrete Disposal .. 7
2.9 General Construction Debris .. 8
3.0 Waste Analysis Program ... 8
 3.1 Waste Characterization for Off-Site Disposal ... 8
 3.1.1 Use of Knowledge to Characterize a Waste Material .. 9
 3.1.2 Waste Sampling .. 10
 3.1.3 Waste Analysis .. 10
 3.1.4 Analytical Data Evaluation ... 10
 3.2 Waste Determination ... 12
 3.2.1 Hazardous Waste .. 13
 3.2.2 Non-Hazardous Waste .. 13
 3.2.3 Recyclable Materials ... 13
 3.3 Waste Disposal Disposition ... 13
 3.3.1 Description of Waste Disposal Options ... 13
 3.3.2 Waste Profiles .. 14
 3.4 Proposed Disposal/Recycling Facilities ... 14
 3.4.1 RCRA Hazardous Waste – Class I ... 14
 3.4.2 Non-RCRA Hazardous Waste (Cal-Haz) – Class I .. 14
 3.4.3 Non-Hazardous Waste – Class III .. 15
 3.4.4 Fluid Recycling (Non-Hazardous/Hazardous) ... 15
 3.4.5 Metal Recycling ... 15
 3.4.6 Universal Waste Disposal ... 15
 3.5 Waste Management Procedures .. 16

ii
3.5.1 Management of Containers – Container Selection .. 16
3.5.2 Labeling of Waste ... 16
3.6 Staging of Waste Materials .. 16
3.6.1 Waste Segregation ... 16
3.6.2 Inspections .. 16
3.7 Manifets, Records and Transportation .. 17
3.7.1 Waste Manifesting .. 17
3.7.2 Waste Haulers ... 17
3.7.3 Recycler Acceptance Criteria .. 18
3.7.4 Recycler Health and Safety Policy .. 18
4.0 Components for Re-Use at Other Exide Facility .. 18

Figures
Figure 1- Sampling Criteria .. 13

Attachments
Attachment 1 Letter from SA Recycling
Attachment 2 Email from SA Recycling
Attachment 3 Exide Facility Acceptance Letters
1.0 Waste Management Plan

Prior to and during completion of the decontamination and deconstruction (D&D) of the Exide Technologies, Inc., Vernon California facility, American Integrated Services, Inc., (AIS) will utilize this internally developed Waste Management Plan (WMP) for the coordination and off-site disposal of the various waste streams to be generated as part of the onsite D&D activities. The WMP provides procedures for managing the characterization, handling and disposal of construction debris, non-hazardous and hazardous wastes; and, describes the responsibilities and procedures to be implemented by AIS during on-site activities.

The purpose of the WMP is to provide pre-transport and disposal policies and procedures relating to waste including appropriate sampling and analysis and required documentation such as analytical testing, waste characterization, disposal facility compliance, internal waste manifests, labels, and spill response information. For waste that has not already been characterized or for waste which waste disposal profiles have not previously been established, waste will be considered impacted until confirmation analysis or screening is complete and/or as directed by Exide and/or their appointee. All analyses are to be performed by a State-certified environmental testing laboratory. General handling of generated waste materials is also addressed in conjunction with the Closure Plan dated December, 2016. Site specific health and safety policies and procedures are provided in the AIS site-specific Health and Safety Plan (HASP) for the Exide facility.

2.0 Decommissioning and Decontamination Activities

During the decommissioning and deconstruction (D&D) activities at the Exide facility, it is expected that a variety of wastes will be generated. A Waste Disposition Flow Chart (Table 3.1) is located in Attachment 12 of the CIP. Additionally, Attachment 12, Table 3.2 shows a more detailed description of the processes and procedures to be used on the site.

The following are brief descriptions of the types of waste that AIS will encounter during the D&D activities. Supplemental descriptions of various onsite waste media are presented below.

2.1 Asbestos Containing Material (ACM)

Asbestos containing material (ACM) is located throughout the facility and will require removal prior to deconstruction in that specific area. During the preconstruction phase of the work, AIS will use the ACM Survey prepared by Exide to tag those items/areas of concern so that, as the schedule allows, the specific item will be abated throughout the course of the project. General ACM waste will be double-wrapped and contained in a sealed roll-off container for characterization and proper off-site disposal. All asbestos abatement activities will be performed in accordance with the State of California Regulations and OHSA standards.

Non-Friable and friable asbestos will be packaged in transparent, sealed and leak-tight (double) 6 mil bags, drums or cartons containing transparent plastic bags, roll-off bins and
“burrito-wrapped” as outlined in SCAQMD Rule 1403. All ACM should be properly wetted at the job-site prior to placing into acceptable packaging. OSHA regulations require warning labels with letters of sufficient size and contrast as to be readily visible and legible, and shall contain the following information as specified by Cal/OSHA 8 CCR 1529(k)(7) requirements:

CAUTION
Contains Asbestos Fibers
Avoid Opening or Breaking Container
Breathing Asbestos is Hazardous to Your Health

or

DANGER
CONTAINS ASBESTOS FIBERS
AVOID CREATING DUST
CANCER AND LUNG DISEASE HAZARD

Leak-tight containers and wrappings of friable and non-friable asbestos will be labeled with the name of the waste generator and the location at which the waste was generated.

- Each leak-tight container(s) of friable asbestos waste must be labeled with a Class 9 label that conforms to DOT regulations and with the proper description of the waste:

“RQ, NA2212, Asbestos, 9, PG III”

- Each leak-tight container(s) of non-friable asbestos waste must be labeled with a Class 9 label that conforms to DOT regulations and with the proper description of the waste:

“Non-Hazardous Waste Solid (non-Friable Asbestos)

Friable and non-friable asbestos waste is to be transported in the subject containers (i.e. drums, cartons, roll-off containers, end-dumps, cube-vans or other non-compacting closed container). Friable and non-Friable ACM waste material will be disposed of at either a hazardous or non-hazardous waste facility, respectively at one of the listed waste disposal facilities presented in Section 3.4 of this Plan.
2.2 Universal Waste Item Removal

2.2.1 Fluorescent Bulbs and HID Lamps

To access fluorescent bulbs and HID lamps, AIS personnel will utilize rolling scaffolding or ladders to support workers on single story floors. For ceilings and outdoor facility lighting of greater height, motorized boom-lifts and/or man-lifts will be utilized to assist in retrieving bulbs and other lighting fixtures. The tubes and lamps will be removed and placed in storage boxes or fiber drums provided by the receiving facility. Containers will be labeled accordingly and temporarily staged in a pre-determined area for eventual off-site disposal. Bulbs and HID Lamps will be transported under Bill-of-Lading or manifest to one of the authorized hazardous waste recycling facilities outlined in Section 3.4.

During fluorescent light removal, if any bulbs or tubes break, personnel will gather the broken items without using a vacuum cleaner and containerize them in a 5-gallon plastic container and consolidated in a DOT 17H 55-gallon steel drum for disposal with intact bulbs. Disposal and profiling will be carried out in accordance with CCR Title 22 Division 4.5 Chapter 23 (The Universal Waste Rule).

2.2.2 PCB and Non-PCB Ballasts

All lighting ballasts will be removed and containerized for off-site recycling. Although non-PCB containing ballasts can be considered general construction debris, each ballast contains a small amount of dielectric fluid which should be managed properly through recycling and not shipped to a local landfill as debris. Ballasts will be staged for eventual off-site recycling and/or disposal at an Exide-approved disposal facility. Shipping documents (bill of lading or manifest) and labels will be prepared per the recommendation and/or requirement of the receiving disposal facility.

2.2.3 Mercury Containing Items (Thermostats & Mercoid Switches)

Located in the basement of the Smelter Building is the natural gas system for heating up the Kettles. The heating elements associated with the Kettles consist of piping, valves, and pressure switches. These pressure switches and housing are manufactured by the Mercoid Corporation. Within the housing are two (2) elemental mercury filled glass ampules that will be removed as part of the Universal Waste (UW) abatement activities. The ampules will be isolated and the wires clipped or the housing will be dismantled; and, the removed glass ampules will be placed in 2-gallon spill-proof plastic containers with several inches of absorbent media. When personnel have removed all mercury items from the facility, the remaining void space in the container will be filled with absorbent. The lid will then be secured and the drum labeled with the generator information and proper shipping name. Articles will be staged for eventual off-site recycling and/or disposal at an Exide approved disposal facility. Shipping documents (bill of lading or manifest) and labels will be prepared per the recommendation and/or requirement of the receiving disposal facility.
2.2.4 Lead Acid Batteries

Located within North Yard Areas are emergency lights stationed at entrance/exit doorways to light escape routes in case of emergency and/or power outage. The emergency light case houses a lead acid battery(s) that will need to be removed and properly managed prior to destruction of the emergency light housing. The battery to be removed will be located and the housing cover opened for access. The removed battery(ies) will be containerized, labeled accordingly and temporarily staged in a pre-determined area for eventual off-site disposal.

If a battery is found to be cracked, leaking, or if the integrity of the battery is potentially impaired, it will be containerized in designated poly drums or 5-gallon containers and handled accordingly as noted above. All personnel handling lead acid batteries will be outfitted with appropriate safety gear including but not limited to chemical resistant Polyvinyl Chloride (PVC) boots, PVC Tyvek Suits, PVC gloves, and hard hats with goggles and face shield or as specified in the site-specific health and safety plan. Any spills will be neutralized with baking soda and water.

2.2.5 Self-Luminous Exit Signs and/or Smoke Detectors (IF ENCONTERED)

All self-luminous self-powered lighted exit signs will be removed and packaged per the manufacturer’s recommendation. The unit will be unbolted from the wall. No attempt will be made to open the body of the exit sign and precautions will be taken by personnel to ensure that the sign is not dropped. Although not visibly recognizable within the facility, AIS will trace the current Fire Alarm System prior to demolition to insure any smoke detectors are removed. Removed devices will be placed into manufacturer-provided boxes suitable for the shipping of the devices. Shipment of these devices will involve the acquisition of a Return Material Authorization (RMA) number provided by the manufacturers. This RMA number is the acceptance and tracking number by the manufacturer.

2.2.6 Electrical Transformers and/or Motor Control Units

Located throughout the facility are various electrical transformers and motor control units that will be sampled to confirm the presence of PCBs. Although some of the units are labeled as “Contains No PCBs”, this will be verified. If the items are confirmed as non-PCB containing, the subject unit can be removed and recycled as non-contaminated oil and articles. The analytical report will be provided to the proposed receiving recycling facility as confirmation. Evacuation of the transformer oil will be conducted by first accessing the fill port opening on the top of the transformer unit and a vacuum truck will be used to remove the oil via vacuum hoses until all residual oil has been removed. The interior of the transformer carcass will then be lightly pressure washed and the resulting rinseate will also be removed via the same truck and transported to one of the proposed State-permitted recycling facilities for recycling/disposal under the proper waste manifesting following the guidelines of the Closure Plan. Once the transformer has been cleaned, the transformer carcass and supporting conduits will be considered general construction
debris and recycled accordingly with other like metallic to one of the proposed Exide approved recycling facility(s).

2.3 Residual Lubricating Oils

Located within several of the supporting operational equipment areas, there exists various oil-containing equipment such as pumps, drill presses, lube reservoirs that will require draining prior to the subject item being removed from the facility for either reuse by Exide or recycled with other metallic items. During pre-site investigations, any operating fluids would be sampled and analyzed. Based on the analytical data, a determination will be made as to its waste classification and final disposition.

2.4 Residual Chemicals (Liquids, Sludge or Solids)

Throughout the facility there may exist residual chemical processing liquids (acid and caustic solutions) utilized in the recycling operations. These chemicals could present a pH issue for personnel decontaminating the vessel or area and the resulting rinseate could pose a waste classification issue. Prior to the decontamination of the any of the former chemical process equipment or storage tanks, AIS will perform an inspection of each unit and generate a listing of those areas of concern. Closure Plan, Table 1.1 will be used as a reference. Once established, AIS will then perform in-field testing on those units (pH) and will utilize the planned decontamination procedures to handle the residual waste and/or neutralize the waste such that it can be introduced into the wastewater stream for eventual treatment or isolated as a stand-alone waste stream for waste classification and off-site disposal at one of proposed disposal facilities. These waste streams may include both liquid and solid form product/byproduct for characterization and handling. Through the inventory and assessment process as well as analytical testing where utilized, AIS will make available the necessary personnel and equipment to facilitate the removal and arrange for the final disposition of the waste.

2.5 Decon Sediment or Filter Press Byproduct Disposal

During the course of the decontamination and deconstruction (D&D) activities, sediment or solids will be generated for the onsite activities. Sediments/solids will be generated as part of the dry decontamination activities. Rinseate waste stream will be generated from pressure washing. Solids generated from the dry decontamination activities (vacuuming, wiping, shoveling) will be placed in specific receptacles that will best manage this material. This can include plastic bags, drums, or sealed roll-off bins. Solids that are dewatered within individual sumps or dewatering containers will be consolidated into a roll-off bins(s) for direct off-site disposal. Saturated solids may be solidified with absorbent media. Solids that are dewatered within individual sumps and dewatering containers will be transferred to storage containers such as drums or roll-offs for phase separation and sediment solidification, if needed.

During the decommissioning of the WWTP, any generated waste will be processed through the temporary WWTP. If minimal temporary storage of wastewater prior to
treatment is needed, the use of 55-gallon drums or 275-gallon poly totes may be utilized, and temporarily stored within the Enclosure, sampled per the Closure Plan Appendix V (Waste Characterization Plan) and transported off-site to an Exide approved disposal/recycling facility.

2.6 Refractory Brick

The Kettle and Furnace Areas, specifically the refractory brick, that are to be decontaminated and removed for re-use or disposal will first be evaluated for the potential of residual radioactivity (RAD) utilizing a Geiger counter device. AIS will log the results of its evaluation of the brick and will provide this information to Exide. If present, AIS has the resources to coordinate the handling and eventual off-site disposal if required. This effort will be coordinated with Exide with respect to final waste determination and disposition of the waste in accordance with the Closure Plan and Exide disposal policy. If the brick does not exhibit RAD contamination, a sample of the refractory brick will be conducted for proper waste classification. Product Data sheets for Krilex 50 (the most common brick utilized on-site contains) states that Chrome Oxide is an element of the brick which could result in the used brick exhibiting levels of Chromium at concentrations that would require the brick to be handled as an impacted waste solid if it is not reused. Analytical testing of the brick will be performed and compared to Title 22, CCR limits and based on the results and supplemental testing, if required, AIS will then coordinate the proper handling, transportation, and disposal of the subject waste.

2.7 Health & Safety PPE Debris

On an on-going basis throughout the duration of the project, AIS will be generating personal protective equipment (PPE) and other materials such as visqueen sheeting, rags and filters. These items will be considered a California hazardous waste solid. These items will be placed in designated receptacle(s) destined for off-site disposal to one of the hazardous waste disposal facilities listed in Section 3.4 of this Plan. Considered as light-weight debris, AIS may incorporate these items into waste streams that exhibit a higher weight. Where excess amounts of sheeting are utilized, the sheeting will be a stand-alone waste stream and considered hazardous waste as listed above.

2.8 Impacted Concrete Disposal

Based on the planned initial chip sampling, AIS will evaluate specific concrete location(s) contemplated for removal.

For those areas to be removed, the proposed removal is planned to be completed in two steps 1) removal of an estimated ½-inch of surfaced concrete and 2) removal of the underlying bulk concrete flooring. During the generation of the two waste streams, analytical testing of the concrete media will be performed and compared to the TTLC, STLC, TCLP regulatory levels presented in Figure 1 (see page 13) to determine proper waste classification. Once classified, AIS will facilitate waste profiling and disposal facility
waste acceptance approval. Once approved, AIS will prepare the proper shipping manifests for the subject waste. Based on waste classification, the concrete media will be transported to one or a combination of the disposal facilities listed in Section 3.4 for this Plan.

2.9 General Construction Debris

During the D&D activities, construction debris whether decontaminated or non-regulated will be generated during the course of the work. This will include but not be limited to: office ceiling tiles, carpeting, wall-board, insulation, plywood, etc. The materials will be properly characterized and generator knowledge utilized for waste determination and off-site disposal. AIS has provided a list of non-hazardous disposal facilities which can accept municipal waste as well as non-hazardous waste per Title 22, CCR Section 261.3(d) regulations. AIS will coordinate roll-off bin containers and transportation for this type of waste with its own resources. Handling and loading of this material will follow Closure Plan procedures.

3.0 Waste Analysis Program

The objective of the waste analysis program is to characterize waste materials resulting from the waste generating scenarios to determine the proper waste disposal option. This characterization will be based on knowledge, observation, and analysis of waste materials. The characterization activities that will be used and are presented below will depend on the disposal options that are developed either by the Closure Plan or by the operators of the off-site treatment and/or disposal facility.

3.1 Waste Characterization for Off-Site Disposal

BASIC waste characterization will occur to establish the characteristics of a new waste material for purposes of creating a new waste profile. Waste intended for off-site disposal will be characterized per receiving facility requirements. In accordance with Title 22, California Code of Regulations (CCR) 66265.197, all waste will be managed as hazardous waste, unless 22 CCR 66261.3(d) for non-hazardous applies. To be characterized as “non-hazardous”, waste will be sampled under California Code of Regulations, Title 22, Division 4.5, Chapter 11, Article 3, using methods described in “Test Methods for Evaluating Solid Waste, Physical/Chemical Methods,” EPA Publication SW-846.

California Hazardous Wastes – To determine if a waste is a California Hazardous Waste it must initially be tested for using a Threshold Limit Concentration (TTLC). It is a total concentration of a specific element, which is compared to a California standard to determine if it is acceptable for disposal in an unrestricted manner. In addition, wastes are analyzed for their solubility using a Solubility Threshold Limit Concentration (STLC) which evaluates whether it may prove a risk to leaching in a landfill.
Federal Hazardous Wastes - To determine if a waste is a Federal Hazardous Waste it must initially be tested for using a Toxicity Characteristic Leaching Procedure (TCLP). This a leaching concentration for a specific element, which is compared to a Federal standard to determine if it is Federal hazardous waste.

Waste exceeding the TTLC (mg/kg) limits listed in 22 CCR 66261.24(A) is classified as a California hazardous waste.

Waste exceeding the STLC limit listed in 22 CCR 66261.24(A) is classified as a California hazardous waste.

Waste exceeding the TLCP limit listed in 40 CFR 261.24 Table 1, is classified as a Federal hazardous waste.

Wastes which exceed the TTLC or STLC limits require additional analysis to determine if the waste is a Federal RCRA hazardous waste by analyzing the sample using the toxicity characteristic leaching procedure (TCLP).

If a waste has a TTLC value that is 10 times the STLC limit then STLC testing is required.

If a waste has a TTLC value that is 20 times the STLC limit then TCLP testing is required.

The TTLC analysis determines the total concentration of each target analyte in a sample with results given in mg/kg. Samples are prepared by EPA3050 or EPA3050B. Samples are also analyzed by EPA 6010B and/or EPA7471 for mercury.

For TCLP analysis, samples are prepared by EPA1311 and analyzed by EPA 6010B. The TCLP allows for a total constituent analysis, such as TTLC, in lieu of the TCLP extraction.

3.1.1 Use of Knowledge to Characterize a Waste Material

Knowledge of the characteristics of a waste material may be used to characterize the waste for the purposes of establishing a waste profile or assessment of a waste material to determine which waste profile is applicable, if the knowledge is sufficient to ensure that the characteristics of the waste are within the range of the definition of the waste in the profile or in the applicable regulations. If there is ever a question whether a waste material meets the characteristics for a waste profile based on generator knowledge, then the waste should be sampled and analyzed in accordance with the sections below or as specified by the receiving treatment/disposal facility that approved the profile or as otherwise specified on a case-by-case basis. Note: waste intended for off-site reuse or recycling at Exide’s secondary lead smelter will not be sampled prior to shipment.
3.1.2 Waste Sampling

The objective of waste sampling is to obtain samples of the waste material that are representative of the subject waste media that will be disposed of as part of the deconstruction activities. All sampling of wastes shall follow the Closure Plan, Appendix V (Waste Characterization Plan).

3.1.3 Waste Analysis

Waste material will be analyzed for constituents that are expected to be present in the material based on the operations conducted in the area, previous investigations or inactive or active waste profiles. Analysis for the purposes of supplementing generator’s knowledge during the waste characterization process will be completed by a State certified laboratory. Analytical testing will follow Closure Plan Appendix V (Waste Characterization Plan), and/or the waste acceptance requirements of the specific disposal facility. In addition, in-house analytical testing may be performed by the receiving facility in order to comply with their specific waste acceptance, treatment, and disposal requirements.

3.1.4 Analytical Data Evaluation

An analytical data evaluation using Figure 1 (see page 13) will be performed to determine the proper waste characterization. The proposed comparison is appropriate because it accounts for complete leaching (maximum contaminant leaching potential) and dilution (due to the addition of a leaching fluid.) For instance, by comparing the TTLC sample result (in mg/kg) to 20 times the TCLP threshold (mg/L) the factor of 20 will compensate for a 20-fold dilution that is inherent in the TCLP preparation and analysis, but not the TTLC preparation and analysis. Thus, if the TTLC results do not exceed 20 times the TCLP limit then it is not necessary to perform the actual TCLP analysis, because even if 100 percent of the contaminant were to be dissolved by the leaching fluid, there would not be a sufficient amount of contaminant to exceed the TCLP threshold. Similarly, because STLC analysis is based on a 10-fold dilution, it is appropriate to compare TTLC results to 10 times the STLC threshold before considering performing STLC analysis.

The waste sample results will be analyzed using the following steps:

The sample is submitted for TTLC analysis, with results reported in (mg/kg or parts per million (ppm)). If the TTLC result does not exceed the STLC Limit in Column B (in mg/l) then the material is considered a Non-Hazardous Waste.

If the TTLC result exceeds the TTLC LIMIT IN COLUMN A, THEN this media would be considered a Non RCRA (California) HAZARDOUS Waste and ADDITIONAL SOLUBILITY TESTING (STLC) must be conducted.

If the TTLC exceeds the value in column B (The STLC concentrations limit IN
COLUMN B), THEN this media would require STLC analysis to determine whether it is NON-HAZARDOUS or NON-RCRA (California) Hazardous.

If the TTLC exceeds the value in Column C (The TCLP concentrations limit IN COLUMN C), THEN this media would require TCLP analysis to determine whether it is a RCRA (Federal) Hazardous waste.

If the STLC is above the concentration in Column D then the media is NON-RCRA (California) Hazardous Waste HOWEVER, IF THE STLC IS BELOW THE CONCENTRATION IN COLUMN D, THEN THE MEDIA IS A NON-HAZARDOUS WASTE.

If the TCLP is above the concentration in Column E then the media is considered a RCRA (Federal) Hazardous Waste, and one or a combination of the applicable RCRA codes would apply, as outlined in Column F.

AIS will evaluate the analytical data, as it relates to the determination and characterization of the subject waste material. Waste analysis results will be attached to the waste profiles as presented to the disposal facility waste acceptance personnel for final approval.
FIGURE 1 – SAMPLING CRITERIA

Metals Concentration Evaluation and Classification Matrix

<table>
<thead>
<tr>
<th>COLUMN A</th>
<th>COLUMN B (mg/kg)</th>
<th>COLUMN C (mg/kg)</th>
<th>COLUMN D (mg/kg)</th>
<th>COLUMN E (mg/kg)</th>
<th>COLUMN F (mg/kg)</th>
<th>RCRA Waste Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title 22 Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTLC Limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>500</td>
<td>150</td>
<td></td>
<td>15</td>
<td></td>
<td>D004</td>
</tr>
<tr>
<td>Arsenic</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>D005</td>
</tr>
<tr>
<td>Barium</td>
<td>10000</td>
<td>1000</td>
<td>2000</td>
<td>100</td>
<td>100</td>
<td>D006</td>
</tr>
<tr>
<td>Beryllium</td>
<td>75</td>
<td>7.5</td>
<td></td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>100</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>D007</td>
</tr>
<tr>
<td>Chromium</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>D008</td>
</tr>
<tr>
<td>Cobalt</td>
<td>8000</td>
<td>800</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>2500</td>
<td>250</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>1000</td>
<td>50</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>D009</td>
</tr>
<tr>
<td>Mercury</td>
<td>20</td>
<td>2</td>
<td>4</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>3500</td>
<td>3500</td>
<td></td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>2000</td>
<td>200</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>100</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>D010</td>
</tr>
<tr>
<td>Silver</td>
<td>500</td>
<td>50</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>D011</td>
</tr>
<tr>
<td>Thallium</td>
<td>700</td>
<td>70</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>3400</td>
<td>240</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>5000</td>
<td>2500</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Rule-of-Thumb:
Analytical results for toxicity characteristics will be reported in Total Threshold Limit Concentrations (TTLC). If the TTLC results exceed 10 times the Soluble Threshold Limit Concentration (STLC) and/or 20 times the RCRA Toxicity Characteristic (TCLP) limits, then a STLC and/or TCLP analysis will be required for waste characterization and disposal facility acceptance. Further discussion is provided in Section 3.1.4 of this Plan.

Notes:
- TTLC (CA): EPA3050B (prep)/ EPA 6010B/EPA 7471 (mercury)
- STLC (CA): Title 22 metals: leachate/filtration method similar to TCLP
- TCLP (Federal): EPA 1311 (prep-18 hrs-leachate/filtration)/6010B (analysis)

3.2 Waste Determination

The determination of waste will be made based on comparison of the waste characteristics as defined in the California Code of Regulation (CCR) Title 22, Division 4.5, specifically Title 22, CCR 66261.10 and as provided by off-site treatment/disposal facilities. Exide shall have the final say in waste disposal determinations for all wastes. For the purposes of summarizing these requirements, the anticipated categories of waste...
that will be assessed for waste determination during the pre-decommissioning evaluation are described in the subsections below. All waste determinations will include evaluation of land disposal restrictions (LDRs) provided in the following sections.

3.2.1 Hazardous Waste

Hazardous wastes are defined to meet the following criteria:

♦ RCRA Hazardous Waste
♦ Non-RCRA Hazardous Waste
♦ Special Waste
♦ TSCA Hazardous Waste
♦ Extremely Hazardous Waste

3.2.2 Non-Hazardous Waste

Non-hazardous wastes are defined to meet the following criteria

♦ Materials which do not meet Title 22, CCR 66261.10 characteristics of a hazardous waste
♦ Waste that meets non-hazardous disposal criteria established by Title 22, CCR66261.3(d)

3.2.3 Recyclable Materials

Scrap metal is not subject to hazardous waste management regulation under CCR Title 22, Division 4.5 section 66261.6 (a)(3)(B)

3.3 Waste Disposal Disposition

When a waste has been characterized, waste determination made and LDRs assessed, the waste disposition will be determined based on selection of a waste profile that corresponds to the waste characteristics or a new waste profile will be generated specific to the subject waste stream. All waste disposal and/or recycling will be documented on an internally prepared Waste Shipment Tracking Log as outlined in the Implementation Plan, Data Management Plan (Contractor Daily Report).

3.3.1 Description of Waste Disposal Options

For the purposes of disposal disposition, waste generated during the site activities will be subject to the following disposal options:
Solid waste that is not hazardous waste for disposal at off-site landfills;
Solid waste for disposal at designated landfills that does not include liquid waste;
Non-hazardous liquid waste for disposal at off-site facilities;
Hazardous waste (including non-RCRA, RCRA, TSCA) for treatment or disposal at off-site facilities; and
UW Items for recycling or disposal at off-site facilities

All receiving facilities are subject to approval by Exide and DTSC.

3.3.2 Waste Profiles

Waste profiles will be prepared and submitted to Exide and/or an Exide appointed representative for approval and then sent with the corresponding data for disposal/recycling facility review and approval.

In addition to the waste profile, some hazardous waste is subject to LDRs per Title 22, CCR 66268 that either prohibit the disposal of the waste or require specific treatment prior to disposal. The evaluation of LDRs for all waste materials and waste profiles will be conducted during the characterization and profiling process.

If the waste exceeds the LDR, the receiving disposal facility will take the required steps to treat the waste to comply with the disposal facility’s permit to operate. Under no circumstances are wastes that exceed the LDRs to be mixed with other material for the purpose of diluting the waste in order to meet the LDRs. The LDR evaluation will be reflected in the LDR required notification and certification form, approved waste profiles and documented accordingly.

3.4 Proposed Disposal/Recycling Facilities

3.4.1 RCRA Hazardous Waste – Class I

US Ecology	Clean Harbors – Buttonwillow
Highway 95 S	2500 W. Lokern Road
Beatty, Nevada 89003	Buttonwillow, California 93206
(775) 553-2203	(661) 762-6200
EPA Id. No. NVT330010000	EPA Id. No. CAD980675276

3.4.2 Non-RCRA Hazardous Waste (Cal-Haz) – Class I

| Republic Services - LaPaz County Landfill | South Yuma County Landfill |
| 26999 Highway 95 Mile Post 128 | 19536 S. Avenue IE |
Phase I Closure at Exide Facility
Vernon, CA

American Integrated Services, Inc.
Waste Management Plan

Parker, Arizona 85344
(928) 916-1253
EPA Id. No. AZC950823111

Yuma, Arizona 85365
(928) 341-9300
EPA Id. No. AZR000506980

3.4.3 Non-Hazardous Waste – Class III

Waste Connections - Chiquita Canyon Landfill
29201 Henry Mayo Drive
Castaic, California 91384
(661) 257-3655

WM – Simi Valley Landfill
2801 Madera Road
Simi Valley, California 93065
(805) 579-7267

WM – Azusa Land Reclamation
1211 W. Gladestone Street
Azusa, California 91702
(800) 963-4776

3.4.4 Fluid Recycling (Non-Hazardous/Hazardous)

DeMenno/Kerdoon
2000 N. Alameda Street
Compton, California 90222
(310) 537-7100
EPA Id. No. CAT080013352

Crosby & Overton
1610 W. 17th Street
Long Beach, California 90813
(562) 432-5445
EPA Id. No. CAD028409019

Evoqua Water Technologies, LLC
5375 South Boyle Ave.
Los Angeles, CA 90058
323-277-1500
EPA Id. No. CAD097030993

3.4.5 Metal Recycling

S&A Recycling
482 Pier T Avenue,
Long Beach, CA 90802
(562) 628-8100

S&A Metals is a recycling facility, one of the largest on the west coast.

3.4.6 Universal Waste Disposal

Lighting Resources, LLC
805 E. Francis Street
Ontario, California 90761
(909) 923-7252
EPA Id. No. CAR000156125

Clean Harbors - Wilmington
1715 Denni Street
Wilmington, California 90744
(310) 594-4385
EPA Id. No. CAD044429835
Lighting Resources specifically recycles UW waste and most UWs are shipped on a Bill-of Lading.

Clean Harbors – Wilmington is a haz-waste Transportation Storage and Disposal Facility and may be used in lieu of Lighting Resources.

3.5 Waste Management Procedures

3.5.1 Management of Containers – Container Selection

During the course of the work, waste will be containerized for eventual off-site disposal at an approved disposal facility. AIS will provide the appropriate container for the waste. Containers may include poly sheeting bags, drums, totes, boxes, roll-offs, end-dump style transports, vacuum truck transports, and temporary dewatering bins for bulk waste scheduled for off-site disposal. Management of waste containers will be conducted in accordance with the Closure Plan.

3.5.2 Labeling of Waste

Proper marking and labeling shall be applied by AIS for all hazardous, non-hazardous, and UW waste at the time the waste is placed in the container. Waste that is stored in bulk shall be posted with a sign that bears an appropriate waste label as well as the information required for waste area signs as applicable.

3.6 Staging of Waste Materials

AIS will establish temporary staging areas within the facility for the storage of hazardous, solid, and/or liquid waste. These temporary areas can be located within the active work area or Unit 1 for staging prior to off-site transportation. Any staging of hazardous waste will not exceed 90 days as required by CFR 40.

3.6.1 Waste Segregation

The storage of waste in containers must be done to prevent the possibility of incompatible waste being commingled or causing a hazard such as waste reaction and heat generation. AIS shall ensure that the storage of incompatible hazardous containers are segregated or otherwise managed. Additionally, AIS shall ensure that non-hazardous waste is not commingled with hazardous waste in order to eliminate the possibility of cross-contamination.

3.6.2 Inspections

AIS shall implement inspection procedures to address potential deficiencies related to the waste storage areas. We shall conduct, at least daily, inspections of the areas designated for container storage, or transfer. AIS shall inspect the area for evidence of deterioration
of containers and secondary containment areas. The inspections and the results shall be recorded and retained as part of the site project files as discussed in the Data Management Plan (Implementation Plan Attachment 2).

3.7 Manifests, Records and Transportation

3.7.1 Waste Manifesting

AIS will prepare the required transportation manifest for the subject waste shipment- in accordance with State and Federal requirements. Exide or appointed signatory will be responsible for the signing of all shipping papers for the transport of non-hazardous/hazardous waste materials. All waste disposal and/or recycling will be documented on an internally prepared Waste Shipment Tracking Log as outlined in the Closure Plan, Section 20.1 and Implementation Plan Data Management Plan (Contractor Daily Report).

Bill-of-Ladings will be utilized as well for the off-site transportation of recyclables as a tracking mechanism. The BOL is a triplicate document that is utilized for internal purposes only. AIS would coordinate the handling and off-site recycling of any scrap metal encountered during the course of the work, if released and approved by Exide and/or appointee. AIS will utilize an Exide approved/recycling facility for scrap metal or any other Exide approved facility.

3.7.2 Waste Haulers

AIS shall ensure waste haulers handling hazardous waste are trained to perform their duties in compliance with CFR 1910.120 (HAZWOPER) or equivalent. All haulers will have the appropriate licenses, certifications, and insurance policies as required for waste handling operations. AIS will coordinate all transportation services and the transporters will comply with the established site safety practices and onsite truck routing as well as off-site delivery of the waste to the respective receiving disposal facility. Transportation routing included in the Closure Implementation Plan will be followed; however, alternative routes\(^{(1)}\) may be utilized as needed due to alternated traffic patterns, freeway closures and/or freeway detours. As applicable, AIS will provide all properly licensed transportation vehicles for the completion of the work.

\(^{(1)}\) As referenced in the Traffic Management Plan of the CIP, should an alternate transportation route be needed for vehicular traffic exiting the Site onto Bandini Boulevard and proceeding to the I-710 portion of the route, AIS will inform the DTSC at once and gain approval of the route alteration. Only when approval is given will any alteration be implemented.
Transporters will be required to provide DOT certifications for transporting non-hazardous and hazardous waste. Controlled truck transportation routes will be maintained, as described in the Implementation Plan, Transportation Plan. In addition, truck and waste tracking forms will be used, as described in the Implementation Plan, Data Management Plan.

3.7.3 Recycler Acceptance Criteria

SA Recycling will accept steel with lead based paint adhered to it per the guidance of Title 22, California Code of Regulations, Section 66260.10 (22 CCR 66260.10) and 22 CCR 66261.6(a)(3)(B). A letter from SA recycling posted on their website is included in this work plan as Attachment 1.

3.7.4 Recycler Health and Safety Policy

The Health and Safety standards of SA Recycling follow Title 22 California Code of Regulations, Title 8, Section 1598, Lead as required by law.

SA’s program includes:

- Exposure Monitoring
- Employee Notification
- Reporting
- Respiratory Protection
- Protective Work Clothing and Equipment
- Housekeeping
- Hygiene Facilities and Practices
- Medical Surveillance
- Medical Examination and Consultations
- Medical Removal Protection
- Training

An email dated January 3, 2017 from SA’s Director of Safety that confirms the regulations SA Recycling is required to follow is included here as Attachment 2.

4.0 Components for Re-Use at Other Exide Facility

Within the facility exists equipment that will be decontaminated and packaged for shipment to another Exide facility. Decontaminated equipment will be wrapped in single 6-mil poly sheeting and placed in a sealed container, or if being transported on an open carriage, the item will be double wrapped to reduce direct contact by anyone and to eliminate exposure to pathways. Attachment 3 contains Exide facility acceptance letter.
Attachment 1
Letter from SA Recycling
January 1, 2015

Re: Scrap Metal with Lead Based Paint

Attention:

SA Recycling, LLC hereby informs you that we will accept scrap metal for recycling purposes that may have lead based paint on it, provided that the paint or coating is intact and exhibits no significant evidence of flaking or surface deterioration. If the paint or coating is separated during the physical removal or demolition activities, the paint waste or debris would be evaluated independently from the scrap metal to determine its proper management. If the paint exhibits hazardous characteristics, then the paint falling to ground is a release to the environment unless it was conducted in secondary containment and the operation was performed by OSHA 40 hour trained personnel. DTSC has enforced this opinion through several enforcement actions.

The basis for the above policy is as follows: Title 22, California Code of Regulations, Section 66260.10 (22 CCR 66260.10) provides the definition of Scrap Metal. 22 CCR 66261.6(a)(3)(B) exempts scrap metal from regulation under Division 4.5 of 22 CCR (i.e., hazardous waste regulations). Under 22 CCR 66260.10, “scrap metal” item (b)(4), excluded from the definition of scrap metal is “any metal contaminated with a hazardous waste, such that the contaminated metal exhibits any characteristic of a hazardous waste under article 3 of chapter 11 of this division;”. Assuming the paint (separately from the scrap metal) exhibited lead concentrations exceeding the criteria for a characteristic of a hazardous waste, when evaluated as a whole with the scrap metal, due to the de minimus weight percent of the paint in comparison to the weight percent of scrap metal, the representative material (i.e., scrap metal w/lead paint) would not fail the criteria for the characteristic referred to in the above cited exclusion from definition of scrap metal.

It is the responsibility of the generator to determine that metal recycling is an appropriate management solution for all materials shipped to SA Recycling. Scrap metal from SA Recycling, LLC facilities is shipped directly to steel mills as feed material and improper classification may inadvertently place undue liability on SAR.

The above policy is subject to change without notice. Should you have any questions, please do not hesitate to call the undersigned.

Sincerely,

Mary Beth McFadden
Vice President, Commercial Ferrous
SA Recycling
§ 66260.10. Definitions.

“Scrap metal” means (a) any one or more of the following, except as provided in subsection (b) of this section:

1. manufactured, solid metal objects and products;
2. metal workings, including cuttings, trimmings, stampings, grindings, shavings and sandings;
3. solid metal residues of metal production; or
4. printed circuit boards that are recycled [except for printed circuit boards referenced in subsec. (b)(7) of this section].

(b) “Scrap metal” excludes all of the following:
1. lead-acid storage batteries, waste elemental mercury, and water-reactive metals such as sodium, potassium and lithium;
2. magnesium borings, trimmings, grindings, shavings and sandings and any other forms capable of producing independent combustion;
3. beryllium borings, trimmings, grindings, shavings, sandings and any other forms capable of producing adverse health effects or environmental harm in the opinion of the Department;
4. any metal contaminated with a hazardous waste, such that the contaminated metal exhibits any characteristic of a hazardous waste under article 3 of chapter 11 of this division;
5. any metal contaminated with an oil that is a hazardous waste and that is free-flowing;
6. sludges, fine powders, semi-solids and liquid solutions that are hazardous wastes; and
7. any printed circuit board that has been removed from a universal waste electronic device by a universal waste handler as a result of the handler's conduct of activities authorized by sections 66273.71, 66273.72, and/or 66273.73 of chapter 23 of this division and is subject to management as a hazardous waste pursuant to sections 66273.71, 66273.72 and/or 66273.73.
§ 66261.6. Requirements for Recyclable Materials.

22 CA ADC § 66261.6
Barclays Official California Code of Regulations
Title 22. Social Security
Division 4.5. Environmental Health Standards for the Management of Hazardous Waste
Chapter 11. Identification and Listing of Hazardous Waste
Article 1. General

22 CCR § 66261.6
§ 66261.6. Requirements for Recyclable Materials.
(a)(1) Recyclable materials are subject to the applicable requirements for generators, transporters and facilities of articles 1 and 2 of chapter 16 of this division, except as specified otherwise for the materials listed in subsections (a)(2), (a)(3), (a)(4), (a)(5), and (a)(6) of this section.
(2) The following recyclable materials are also regulated under the articles (of chapter 16 of this division) specified below, and all applicable provisions in chapters 20 and 21 of this division:
(A) [RESERVED];
(B) hazardous wastes burned for energy recovery in boilers and industrial furnaces that are not regulated under article 15 of chapter 14 or 15 of this division are regulated under article 8 of chapter 16 of this division.
(C) spent lead-acid storage batteries that are being reclaimed are regulated under article 7 of chapter 16 of this division;
(D) recyclable materials that are being used in agriculture are regulated under article 8.5 of chapter 16 of this division;
(E) waste elemental mercury that is being recycled is regulated under article 9 of chapter 16 of this division.
(3) The following are not subject to regulation under this division, and are not subject to the notification requirements of Health and Safety Code section 25153.6:
(A) materials that can be shown to be recycled by methods identified in subdivisions (b), (c) or (d) of Health and Safety Code section 25143.2; and
(B) scrap metal as defined in section 66260.10. However, scrap metal that meets the definition of a RCRA hazardous waste is not subject to regulation under this division and is not subject to the notification requirements of Health and Safety Code section 25153.6, only when the scrap metal is being recycled; and
(C) hazardous wastes that exhibit the characteristic of toxicity specified in section 66261.24(a)(1) and do not exhibit any other characteristic of a hazardous waste specified in article 3 of this chapter (commencing with section 66261.20), are not listed in article 4 of this chapter (commencing with section 66261.30), and that qualify as one of the materials specified in 40 CFR section 261.6(a)(3) (incorporated by reference in section 66260.11).
Attachment 2
Email from SA Recycling
Dan,

Below is the email I received from Tamara a little bit ago and my response.

Their compliance is with CCR Title 8, Section 5198, that would be applicable to the metal recycling.

Maybe Alfonso can shed some light on the requirement of 5198 if you are looking for specifics but if they are complying with 5198, I would assume all of 5198 would be applicable.

Sincerely,

John D. Farmer
Client Services and Technical Coordinator
1502 E. Opp Street
Wilmington, CA 90744
Ph. (310) 522-1168 Fax (310) 522-0474
Cell (714) 307-4322
Email jfarmer@americanintegrated.com
Web www.americanintegrated.com

From: Tamara Deiro (HQ Orange 0416) [mailto:TDeiro@sarecycling.com]
Sent: Tuesday, January 03, 2017 12:16 PM
To: Lindsay K. Maine (HQ Orange 0411) <lmaine@sarecycling.com>
Cc: John Farmer <jfarmer@americanintegrated.com>; Michael Kora (Terminal Island 5187) <MKora@sarecycling.com>; Daniela Tanzarelli (Anaheim 2042) <DTanzarelli@sarecycling.com>; Todd Peterson (Anaheim 2041) <TPeterson@sarecycling.com>
Subject: RE: Requested Information - HSP

John,

Yes, we conduct Medical Surveillance according to the Lead Standard (5198) on employees with potential for exposure. The medical surveillance includes, Blood lead/ZPP, PFT, Respirator fit and hearing tests.

Tamara Deiro
Director of Safety
RIOS Management Representative
SA Recycling
Attachment 3
Exide Facility Acceptance Letter
January 9, 2017

Exide Technologies
Vernon Recycling Plant
Attn: Daniel Henke
2700 S. Indiana St.
Vernon, CA 90058

Re: Vernon Closure Implementation Plan

Dear Dan:

As you know, the Exide Technologies Muncie Recycling Plant is currently engaged in secondary lead recycling, meeting all the requirements specified for worker protection in the OSHA lead standard and our RCRA Part B permit (Indiana Department of Environmental Management permit no. INDO00717959, expiration 7/30/2020). Workers at our plant have the same health and safety protections afforded at the Vernon plant, to include medical monitoring, personal protective equipment provision and training, worker exposure monitoring and area air monitoring, to name just a few.

Since we are a similar industry, many items of equipment currently located at the Vernon plant would be useful here at the Muncie Plant. Installation and operation of any of this equipment would be subject to the requirements of our RCRA Part B permit, Title V Air Operating Permit, City of Muncie Wastewater Discharge permit and State of Indiana Stormwater Discharge Permit.

If you have any questions please contact the undersigned at 765-747-9980 ext 120, or Mike Henry at ext 124.

[Signature]

Robert Saurer
Plant Manager
Muncie Recycling
Exide Technologies
January 9, 2017

Exide Technologies
Vernon Recycling Plant
Attn: Daniel Henke
2700 S. Indiana St.
Vernon, CA 90058

Re: Vernon Closure Implementation Plan

Dear Dan:

As you know, the Exide Technologies Canon Hollow Recycling Plant is currently engaged in secondary lead recycling, meeting all the requirements specified for worker protection in the OSHA lead standard and our RCRA Part B permit (Missouri Department of Natural Resources permit no. MOD030712822, expiration 9/23/2019). Workers at our plant have the same health and safety protections afforded at the Vernon Plant, to include medical monitoring, personal protective equipment provision and training, worker exposure monitoring and area air monitoring, to name just a few.

Since we are a similar industry, many items of equipment currently located at the Vernon plant would be useful here at the Canon Hollow Plant. Installation and operation of any of this equipment would be subject to the requirements of our RCRA part B permit, Title V Air Operating Permit, and NPDES permit.

If you have any questions please contact the undersigned at 660-446-3321 ext 14, or John Wheeler at ext 11.

Steve Carter
Plant Manager
Canon Hollow Recycling
Exide Technologies