

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 17-01-2401

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Terraphase Engineering, Inc. Client Project Name: ISRI MSR Treatability Study / 0102.001.003 Attention: Emily Mosen 1404 Franklin Street

Suite 600 Oakland, CA 94612-3215

Approved for release on 02/13/2017 by: Don Burley Project Manager

ResultLink)

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🛟 eurofins

Calscience

Contents

Client Proje Work Orde	ect Name: r Number:	ISRI MSR Treatability Study / 0102.001.003 17-01-2401	
1	Work Ord	ler Narrative	3
2	Sample S	Summary	4
3	Client Sa 3.1 ASTI 3.2 EPA 3.3 EPA	mple Data	5 5 8 12
4	Quality C 4.1 MS/N 4.2 PDS/ 4.3 Sam 4.4 LCS/	ontrol Sample Data	18 18 20 21 22
5	Sample A	nalysis Summary	24
6	Glossary	of Terms and Qualifiers	25
7	Chain-of-	Custody/Sample Receipt Form	26

Work Order: 17-01-2401

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/27/17. They were assigned to Work Order 17-01-2401.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

The report has been revised to change the sample IDs.

Return to Contents

🛟 eurofins

Sample Summary

Client:	Terraphase Engineering, Inc.	Work Order:	17-01-2401
	1404 Franklin Street, Suite 600	Project Name:	ISRI MSR Treatability Study / 0102.001.003
	Oakland, CA 94612-3215	PO Number:	
		Date/Time Received:	01/27/17 10:00
		Number of Containers:	16

Attn: **Emily Mosen**

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SMM-1-1-M	17-01-2401-1	01/25/17 11:00	1	Solid
SMM-1M-1-U	17-01-2401-2	01/25/17 11:00	1	Solid
SMM-1-2-M	17-01-2401-3	01/25/17 12:00	1	Solid
SMM-1M-2-U	17-01-2401-4	01/25/17 12:00	1	Solid
SMM-1-3-M	17-01-2401-5	01/25/17 13:00	1	Solid
SMM-1M-3-U	17-01-2401-6	01/25/17 13:00	1	Solid
SMM-1-4-M	17-01-2401-7	01/25/17 14:00	1	Solid
SMM-1M-4-U	17-01-2401-8	01/25/17 14:00	1	Solid
SMM-1-5-M	17-01-2401-9	01/25/17 15:00	1	Solid
SMM-1M-5-U	17-01-2401-10	01/25/17 15:00	1	Solid
SMM-1-6-M	17-01-2401-11	01/25/17 16:00	1	Solid
SMM-1M-6-U	17-01-2401-12	01/25/17 16:00	1	Solid
SMM-1-7-M	17-01-2401-13	01/25/17 17:00	1	Solid
SMM-1M-7-U	17-01-2401-14	01/25/17 17:00	1	Solid
SMM-1-8-M	17-01-2401-15	01/25/17 18:00	1	Solid
SMM-1M-8-U	17-01-2401-16	01/25/17 18:00	1	Solid

Terraphase Engineering, Inc.			Date Re	ceived:			01/27/17
1404 Franklin Street, Suite 600			Work O	rder:			17-01-2401
Oakland, CA 94612-3215			Prepara	tion:			N/A
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Study	y / 0102.001.003					Pa	ge 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-1-1-M	17-01-2401-1-A	01/25/17 11:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		RL	DF	Qua	lifiers
Moisture		36		0.10	1.00		
SMM-1M-1-U	17-01-2401-2-A	01/25/17 11:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		RL	DF	Qua	lifiers
Moisture		37		0.10	1.00		
SMM-1-2-M	17-01-2401-3-A	01/25/17 12:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		<u>RL</u>	DF	Qua	lifiers
Moisture		38		0.10	1.00		
SMM-1M-2-U	17-01-2401-4-A	01/25/17 12:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		41		0.10	1.00		
SMM-1-3-M	17-01-2401-5-A	01/25/17 13:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		37		0.10	1.00		
SMM-1M-3-U	17-01-2401-6-A	01/25/17 13:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		38		0.10	1.00		
SMM-1-4-M	17-01-2401-7-A	01/25/17 14:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		36		0.10	1.00		
SMM-1M-4-U	17-01-2401-8-A	01/25/17 14:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		RL	DF	Qua	lifiers
Moisture		38		0.10	1.00		

Terraphase Engineering, Inc.			Date Re	ceived:			01/27/17
1404 Franklin Street, Suite 600			Work O	rder:			17-01-2401
Oakland, CA 94612-3215			Prepara	tion:			N/A
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Stud	y / 0102.001.003					Ра	ge 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-1-5-M	17-01-2401-9-A	01/25/17 15:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		RL	DF	Qua	lifiers
Moisture		33		0.10	1.00		
SMM-1M-5-U	17-01-2401-10-A	01/25/17 15:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		RL	DF	Qua	lifiers
Moisture		45		0.10	1.00		
SMM-1-6-M	17-01-2401-11-A	01/25/17 16:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		RL	DF	Qua	lifiers
Moisture		39		0.10	1.00		
SMM-1M-6-U	17-01-2401-12-A	01/25/17 16:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		36		0.10	1.00		
SMM-1-7-M	17-01-2401-13-A	01/25/17 17:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		38		0.10	1.00		
SMM-1M-7-U	17-01-2401-14-A	01/25/17 17:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		35		0.10	1.00		
SMM-1-8-M	17-01-2401-15-A	01/25/17 18:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		<u>RL</u>	DE	Qua	lifiers
Moisture		40		0.10	1.00		
SMM-1M-8-U	17-01-2401-16-A	01/25/17 18:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result		RL	DF	Qua	lifiers
Moisture		33		0.10	1.00		

Terraphase Engineering, Inc.		Date Rec	eived:	01/27/17			
1404 Franklin Street, Suite 600			Work Ord	er:	17-01-2401		
Oakland, CA 94612-3215		Preparation:			N/A		
		Method:			ASTM D-2216 (M)		
			Units:				%
Project: ISRI MSR Treatability St	3				Pa	ge 3 of 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-05-014-6672	N/A	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB1
Parameter		Result	ŀ	RL	DF	Qua	lifiers
Moisture		ND	(0.10	1.00		

Return to Contents

Terraphase	Engineering, Inc.			Date Re	ceived:		01/27/17	
1404 Frankli	n Street, Suite 600			Work O	rder:		17-01-2401	
Oakland, CA	94612-3215			Prepara	tion:			EPA 3050B
,				Method:				EPA 6010B
				Units:				ma/ka
Project: ISR	MSR Treatability Stud	y / 0102.001.003	3				Pa	ige 1 of 4
Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-1-1-M		17-01-2401-1-A	01/25/17 11:00	Solid	ICP 7300	01/31/17	02/01/17 13:02	170131L04
Comment(s):	- The reporting limit is eleve	ated resulting from m	natrix interfere	ence.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			9.36		5.10	10.2		
Lead			656		5.10	10.2		
Zinc			20500		10.2	10.2		
SMM-1M-1-U		17-01-2401-2-A	01/25/17 11:00	Solid	ICP 7300	01/31/17	02/01/17 13:06	170131L04
Comment(s):	- The reporting limit is eleve	ated resulting from m	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DE	Qua	alifiers
Cadmium			26.6		4.83	9.66		
Lead			1220		4.83	9.66		
Zinc			12800		9.66	9.66		
SMM-1-2-M		17-01-2401-3-A	01/25/17 12:00	Solid	ICP 7300	01/31/17	02/01/17 13:07	170131L04
Comment(s):	- The reporting limit is eleve	ated resulting from m	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			7.82		5.10	10.2		
Lead			549		5.10	10.2		
Zinc			8700		10.2	10.2		
SMM-1M-2-U		17-01-2401-4-A	01/25/17 12:00	Solid	ICP 7300	01/31/17	02/01/17 13:08	170131L04
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	ence.				
Parameter		-	Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			17.3		4.98	9.95		
Lead			15500		4.98	9.95		
Zinc			11000		9.95	9.95		
SMM-1-3-M		17-01-2401-5-A	01/25/17	Solid	ICP 7300	01/31/17	02/01/17 13:09	170131L04
Comment(s):	- The reporting limit is eleve	ated resulting from n	natrix interfere	ence.				
Parameter		5	Result		RL	DF	Qua	alifiers
Cadmium			7.03		5.08	10.2		
Lead			625		5.08	10.2		
Zinc			6200		10.2	10.2		
			0200		10.2	10.2		

Terraphase I	Engineering, Inc.		Date Received:						
1404 Frankli	n Street, Suite 600			Work Order: 17					
Oakland, CA	94612-3215			Preparat	tion:			EPA 3050B	
				Method:			EPA 6010B		
				Units:				mg/kg	
Project: ISRI	MSR Treatability Study	y / 0102.001.003	3				Pa	ige 2 of 4	
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SMM-1M-3-U		17-01-2401-6-A	01/25/17 13:00	Solid	ICP 7300	01/31/17	02/01/17 13:10	170131L04	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.					
Parameter			Result		RL	DF	Qua	alifiers	
Cadmium			10.4		4.98	9.95			
Lead			1330		4.98	9.95			
Zinc			11100		9.95	9.95			
SMM-1-4-M		17-01-2401-7-A	01/25/17 14:00	Solid	ICP 7300	01/31/17	02/01/17 13:13	170131L04	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.			·		
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>	
Cadmium			10.4		4.90	9.80			
Lead			613		4.90	9.80			
Zinc			6450		9.80	9.80			
SMM-1M-4-U		17-01-2401-8-A	01/25/17 14:00	Solid	ICP 7300	01/31/17	02/01/17 13:14	170131L04	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Cadmium			9.23		4.88	9.76			
Lead			1030		4.88	9.76			
Zinc			7800		9.76	9.76			
SMM-1-5-M		17-01-2401-9-A	01/25/17	Solid	ICP 7300	01/31/17	02/01/17 13:15	170131L04	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.					
Parameter		Ū	Result		<u>RL</u>	DF	Qua	alifiers	
Cadmium			10.9		5.10	10.2			
Lead			612		5.10	10.2			
Zinc					40.0	10.0			
			5690		10.2	10.2			
SMM-1M-5-U		17-01-2401-10-A	5690 01/25/17 15:00	Solid	ICP 7300	10.2 01/31/17	02/01/17 13:16	170131L04	
SMM-1M-5-U Comment(s):	- The reporting limit is eleva	17-01-2401-10-A ated resulting from m	5690 01/25/17 15:00 natrix interferen	Solid	ICP 7300	10.2 01/31/17	02/01/17 13:16	170131L04	
SMM-1M-5-U Comment(s): Parameter	- The reporting limit is eleva	17-01-2401-10-A ated resulting from m	5690 01/25/17 15:00 natrix interferen <u>Result</u>	Solid nce.	ICP 7300	10.2 01/31/17 DE	02/01/17 13:16 Qua	170131L04	
SMM-1M-5-U Comment(s): Parameter Cadmium	- The reporting limit is eleva	17-01-2401-10-A ated resulting from m	5690 01/25/17 15:00 natrix interferen <u>Result</u> 18.4	Solid nce.	ICP 7300 RL 4.98	10.2 01/31/17 <u>DF</u> 9.95	02/01/17 13:16 <u>Qua</u>	170131L04 alifiers	
SMM-1M-5-U Comment(s): Parameter Cadmium Lead	- The reporting limit is eleva	17-01-2401-10-A ated resulting from m	5690 01/25/17 15:00 natrix interferen <u>Result</u> 18.4 757	Solid	ICP 7300 RL 4.98 4.98	10.2 01/31/17 DE 9.95 9.95	02/01/17 13:16 Qua	170131L04 alifiers	
SMM-1M-5-U Comment(s): Parameter Cadmium Lead Zinc	- The reporting limit is eleva	17-01-2401-10-A ated resulting from m	5690 01/25/17 15:00 natrix interferen <u>Result</u> 18.4 757 8520	Solid	ICP 7300 <u>RL</u> 4.98 4.98 9.95	10.2 01/31/17 DE 9.95 9.95 9.95	02/01/17 13:16 <u>Qua</u>	170131L04 alifiers	

01/27/17

17-01-2401

EPA 3050B EPA 6010B mg/kg

QC Batch ID

170131L04

170131L04

170131L04

170131L04

170131L04

Terraphase	Engineering, Inc.			Date Re	ceived:			01/2		
1404 Frankli	n Street, Suite 600			Work Order:						
Oakland, CA	94612-3215			Prepara	tion:		EPA 3			
,				Method: E						
				Units:				m		
Project: ISR	MSR Treatability Study / 0102.0	01.003		•			Pa	age 3 of 4		
Client Sample N	Number Lab Samp Number	le	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch		
SMM-1-6-M	17-01-240	1-11-A	01/25/17 16:00	Solid	ICP 7300	01/31/17	02/01/17 13:17	170131L		
Comment(s):	- The reporting limit is elevated resultin	g from ma	atrix interfere	ence.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>		
Cadmium			8.58		5.18	10.4				
Lead			663		5.18	10.4				
Zinc			7340		10.4	10.4				
SMM-1M-6-U	17-01-240	1-12-A	01/25/17 16:00	Solid	ICP 7300	01/31/17	02/01/17 13:18	170131L		
Comment(s):	- The reporting limit is elevated resultin	g from ma	atrix interfere	ence.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>		
Cadmium			9.79		4.78	9.57				
Lead			761		4.78	9.57				
Zinc			7900		9.57	9.57				
SMM-1-7-M	17-01-240	1-13-A	01/25/17 17:00	Solid	ICP 7300	01/31/17	02/01/17 13:19	170131L		
Comment(s):	- The reporting limit is elevated resultin	g from ma	atrix interfere	ence.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>		
Cadmium			8.89		5.05	10.1				
Lead			567		5.05	10.1				
Zinc			10100		10.1	10.1				
SMM-1M-7-U	17-01-240	1-14-A	01/25/17 17:00	Solid	ICP 7300	01/31/17	02/01/17 13:19	170131L		
Comment(s):	- The reporting limit is elevated resultin	g from ma	atrix interfere	ence.						
Parameter A Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>		
Cadmium			8.40		4.93	9.85				
Lead			711		4.93	9.85				
Zinc			9810		9.85	9.85				
SMM-1-8-M	17-01-240	1-15-A	01/25/17 18:00	Solid	ICP 7300	01/31/17	02/01/17 13:20	170131L		
Comment(s):	- The reporting limit is elevated resultin	g from ma	atrix interfere	ence.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers		
Cadmium			11.5		4.88	9.76				
Lead			711		4.88	9.76				
Zinc			9260		9.76	9.76				

Analytical Report

Terraphase Engineering, Inc.		Date Rec	eived:		01/27/17				
1404 Franklin Street, Suite 600			Work Ord	er:		17-01-2401			
Oakland, CA 94612-3215			Preparation	on:		EPA 3050B			
			Method:			EPA 6010B			
		mg/kg							
Project: ISRI MSR Treatability Study / 0102.001.003 Page 4 of 4									
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
SMM-1M-8-U	17-01-2401-16-A	01/25/17 18:00	Solid	ICP 7300	01/31/17	02/01/17 13:21	170131L04		
Comment(s): - The reporting limit is eleva	ted resulting from m	atrix interfere	nce.						
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	<u>Qual</u>	ifiers		
Cadmium		10.7	ţ	5.10	10.2				
Lead		966	ţ	5.10	10.2				
Zinc		11300		10.2	10.2				
				-					

Method Blank	097-01-002-24274	N/A	Solid	ICP 7300	01/31/17	02/01/17 11:48	170131L04	
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>	
Cadmium		ND		0.481	0.962			
Lead		ND		0.481	0.962			
Zinc		ND		0.962	0.962			

Terraphase E	Engineering, Inc.		Date Re	01/27/17				
1404 Franklir	n Street, Suite 600			Work O	17-01-2401			
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All
				Method:				EPA 6010B
				Units:				mg/L
Project: ISRI	MSR Treatability Study	y / 0102.001.003					Ра	ge 1 of 6
Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-1-1-M		17-01-2401-1-A	01/25/17 11:00	Solid	ICP 7300	02/03/17	02/07/17 11:57	170206LA9
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample	e.				
Parameter			Result		<u>RL</u>	DF	Qua	lifiers
Cadmium			0.825		0.100	1.00		
Lead			29.5		0.100	1.00		
SMM-1-1-M		17-01-2401-1-A	01/25/17 11:00	Solid	ICP 7300	02/03/17	02/08/17 15:29	170206LA9
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample	e.				
Parameter et al			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Zinc			497		1.00	10.0		
SMM-1M-1-U		17-01-2401-2-A	01/25/17 11:00	Solid	ICP 7300	02/03/17	02/07/17 11:58	170206LA9
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample	e.				
Parameter erementer			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			1.07		0.100	1.00		
Lead			52.3		0.100	1.00		
SMM-1M-1-U		17-01-2401-2-A	01/25/17 11:00	Solid	ICP 7300	02/03/17	02/08/17 15:30	170206LA9
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Zinc			725		1.00	10.0		
SMM-1-2-M		17-01-2401-3-A	01/25/17 12:00	Solid	ICP 7300	02/03/17	02/07/17 11:59	170206LA9
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample	e.				
Parameter et a			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			0.519		0.100	1.00		
Lead			18.7		0.100	1.00		
SMM-1-2-M		17-01-2401-3-A	01/25/17 12:00	Solid	ICP 7300	02/03/17	02/08/17 15:31	170206LA9
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Zinc			481		1.00	10.0		

Terraphase I	Engineering, Inc.			Date Received: 01/27/1					
1404 Frankli	n Street, Suite 600			Work Or	der:			17-01-2401	
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All	
				Method:				EPA 6010B	
				Units:				ma/L	
Project: ISRI	MSR Treatability Stud	y / 0102.001.00	3				Pa	ige 2 of 6	
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SMM-1M-2-U		17-01-2401-4-A	01/25/17 12:00	Solid	ICP 7300	02/03/17	02/07/17 12:00	170206LA9	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>	
Cadmium			0.782		0.100	1.00			
Lead			37.4		0.100	1.00			
SMM-1M-2-U		17-01-2401-4-A	01/25/17 12:00	Solid	ICP 7300	02/03/17	02/08/17 15:32	170206LA9	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>	
Zinc			574		1.00	10.0			
SMM-1-3-M		17-01-2401-5-A	01/25/17 13:00	Solid	ICP 7300	02/03/17	02/07/17 12:01	170206LA9	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>	
Cadmium			0.425		0.100	1.00			
Lead			38.8		0.100	1.00			
Zinc			466		0.100	1.00			
SMM-1M-3-U		17-01-2401-6-A	01/25/17 13:00	Solid	ICP 7300	02/03/17	02/07/17 12:02	170206LA9	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter er			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Cadmium			0.564		0.100	1.00			
Lead			56.7		0.100	1.00			
SMM-1M-3-U		17-01-2401-6-A	01/25/17 13:00	Solid	ICP 7300	02/03/17	02/08/17 15:33	170206LA9	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Zinc			636		1.00	10.0			

Terraphase E	Engineering, Inc.			Date Re	ceived:			01/27/17
1404 Franklir	n Street, Suite 600			Work Or	der:			17-01-2401
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All
				Method:				EPA 6010B
				Units:				mg/L
Project: ISRI	MSR Treatability Stud	y / 0102.001.003	3				Pa	ige 3 of 6
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-1-4-M		17-01-2401-7-A	01/25/17 14:00	Solid	ICP 7300	02/03/17	02/07/17 12:02	170206LA9
Comment(s):	- The analysis was perform	ned on a STLC extra	ict of the samp	le.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.464		0.100	1.00		
Lead			36.2		0.100	1.00		
SMM-1-4-M		17-01-2401-7-A	01/25/17 14:00	Solid	ICP 7300	02/03/17	02/08/17 15:34	170206LA9
Comment(s):	- The analysis was perform	ned on a STLC extra	ict of the samp	le.				
Parameter			<u>Result</u>	<u>RL</u> <u>DF</u>			Qua	alifiers
Zinc			484		1.00	10.0		
SMM-1M-4-U		17-01-2401-8-A	01/25/17 14:00	Solid	ICP 7300	02/03/17	02/07/17 12:03	170206LA9
Comment(s):	- The analysis was perform	ned on a STLC extra	ict of the samp	le.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.968		0.100	1.00		
Lead			47.1		0.100	1.00		
SMM-1M-4-U		17-01-2401-8-A	01/25/17 14:00	Solid	ICP 7300	02/03/17	02/08/17 15:35	170206LA9
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.				
Parameter Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Zinc			589		1.00	10.0		
SMM-1-5-M		17-01-2401-9-A	01/25/17 15:00	Solid	ICP 7300	02/03/17	02/07/17 12:04	170206LA9
Comment(s):	- The analysis was perform	ned on a STLC extra	ict of the samp	le.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.509		0.100	1.00		
Lead			10.3		0.100	1.00		
Zinc			289		0.100	1.00		

Terraphase E	Engineering, Inc.			Date Re	ceived:			01/27/17			
1404 Franklir	n Street, Suite 600			Work Or	rder:			17-01-2401			
Oakland, CA	94612-3215			Prepara	T22.11.5. All						
				Method: EPA 601							
				Units:				mg/L			
Project: ISRI	MSR Treatability Study	/ / 0102.001.003					Pa	ge 4 of 6			
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
SMM-1M-5-U		17-01-2401-10-A	01/25/17 15:00	Solid	ICP 7300	02/03/17	02/07/17 12:07	170206LA9			
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the samp	le.							
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers			
Cadmium			1.32		0.100	1.00					
Lead			56.1		0.100	1.00					
SMM-1M-5-U		17-01-2401-10-A	01/25/17 15:00	Solid	ICP 7300	02/03/17	02/08/17 15:36	170206LA9			
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the samp	le.							
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers			
Zinc			635		1.00	10.0					
SMM-1-6-M		17-01-2401-11-A	01/25/17 16:00	Solid	ICP 7300	02/03/17	02/07/17 12:08	170206LA9			
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the samp	le.							
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers			
Cadmium			0.248		0.100	1.00					
Lead			34.9		0.100	1.00					
SMM-1-6-M		17-01-2401-11-A	01/25/17 16:00	Solid	ICP 7300	02/03/17	02/08/17 15:36	170206LA9			
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the samp	le.							
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers			
Zinc			473		1.00	10.0					
SMM-1M-6-U		17-01-2401-12-A	01/25/17 16:00	Solid	ICP 7300	02/03/17	02/07/17 12:09	170206LA9			
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the samp	le.							
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers			
Cadmium			0.172		0.100	1.00					
Lead			60.7		0.100	1.00					
SMM-1M-6-U		17-01-2401-12-A	01/25/17 16:00	Solid	ICP 7300	02/03/17	02/08/17 15:39	170206LA9			
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the samp	le.							
Parameter			Result		<u>RL</u>	DF	Qua	alifiers			
Zinc			666		1.00	10.0					

Terraphase Engineering, Inc			Date Re	ceived:			01/27/17
1404 Franklin Street, Suite 6	00		Work Or	der:			17-01-2401
Oakland, CA 94612-3215			Preparat	tion:			T22.11.5. All
			Method:				EPA 6010B
			Units:				mg/L
Project: ISRI MSR Treatabilit	y Study / 0102.001.003					Pa	ige 5 of 6
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-1-7-M	17-01-2401-13-A	01/25/17 17:00	Solid	ICP 7300	02/03/17	02/07/17 12:10	170206LA9
Comment(s): - The analysis was	s performed on a STLC extrac	t of the sampl	е.				
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium		0.371		0.100	1.00		
Lead		27.5		0.100	1.00		
SMM-1-7-M	17-01-2401-13-A	01/25/17 17:00	Solid	ICP 7300	02/03/17	02/08/17 15:40	170206LA9
Comment(s): - The analysis was	s performed on a STLC extrac	t of the sampl	e.				
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Zinc		452		1.00	10.0		
SMM-1M-7-U	17-01-2401-14-A	01/25/17 17:00	Solid	ICP 7300	02/03/17	02/07/17 12:11	170206LA9
Comment(s): - The analysis was	s performed on a STLC extrac	t of the sampl	e.				
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium		0.232		0.100	1.00		
Lead		38.4		0.100	1.00		
SMM-1M-7-U	17-01-2401-14-A	01/25/17 17:00	Solid	ICP 7300	02/03/17	02/08/17 15:41	170206LA9
Comment(s): - The analysis was	s performed on a STLC extrac	t of the sampl	e.				
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Zinc		628		1.00	10.0		
SMM-1-8-M	17-01-2401-15-A	01/25/17 18:00	Solid	ICP 7300	02/03/17	02/07/17 12:12	170206LA9
Comment(s): - The analysis was	s performed on a STLC extrac	t of the sampl	e.				
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium		0.460		0.100	1.00		
Lead		40.5		0.100	1.00		
SMM-1-8-M	17-01-2401-15-A	01/25/17 18:00	Solid	ICP 7300	02/03/17	02/08/17 15:42	170206LA9
Comment(s): - The analysis was	s performed on a STLC extrac	t of the sampl	e				
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Zinc		536		1.00	10.0		

Terraphase Engineering,	Inc.		Date Rece	eived:			01/27/17
1404 Franklin Street, Suit	e 600		Work Orde	er:			17-01-2401
Oakland, CA 94612-3215			Preparatio	n:	T22.11.5. All		
			Method:				EPA 6010B
			Units:				mg/L
Project: ISRI MSR Treata	bility Study / 0102.001.003	3				Pa	age 6 of 6
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-1M-8-U	17-01-2401-16-A	01/25/17 18:00	Solid	ICP 7300	02/03/17	02/07/17 12:13	170206LA9
Comment(s): - The analysis	was performed on a STLC extra	ct of the sampl	е.				
Parameter		Result	<u>R</u>	<u>L</u>	DF	<u>Qua</u>	alifiers
Cadmium		0.530	0	.100	1.00		
Lead		50.8	0	.100	1.00		
SMM-1M-8-U	17-01-2401-16-A	01/25/17 18:00	Solid	ICP 7300	02/03/17	02/08/17 15:43	170206LA9
Comment(s): - The analysis	was performed on a STLC extra	ct of the sampl	e.	-			
<u>Parameter</u>		<u>Result</u>	<u>R</u>	<u>L</u>	DF	Qua	alifiers
Zinc		774	1	.00	10.0		
Method Blank	097-05-006-8906	N/A	Aqueous	ICP 7300	02/03/17	02/07/17 11:50	170206LA9
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	alifiers
Cadmium		ND	0	.100	1.00		
Lead		ND	0	.100	1.00		
Zinc		ND	0	.100	1.00		

Quality Control - Spike/Spike Duplicate

Terraphase Engineering, Inc.	Date Received:	01/27/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2401
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001	Page 1 of 2	

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
SMM-1-1-M	Sample		Solid	ICP	7300	01/31/17	02/01/17	13:02	170131S04	
SMM-1-1-M	Matrix Spike		Solid	ICP	7300	01/31/17	02/01/17	13:03	170131S04	
SMM-1-1-M	Matrix Spike I	Duplicate	Solid	ICP	7300	01/31/17	02/01/17	13:04	170131S04	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Cadmium	9.359	25.00	34.39	100	38.85	118	75-125	12	0-20	
Lead	656.1	25.00	960.7	4X	1139	4X	75-125	4X	0-20	Q
Zinc	20470	25.00	8694	4X	8747	4X	75-125	4X	0-20	Q

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

Terraphase Engineering, Inc.	Date Received:	01/27/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2401
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.003		Page 2 of 2

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-02-0432-1	Sample		Aqueous	IC	P 7300	02/06/17	02/07/17	11:52	170206SA9	
17-02-0432-1	Matrix Spike		Aqueous	IC	P 7300	02/06/17	02/07/17	11:53	170206SA9	
17-02-0432-1	Matrix Spike I	Duplicate	Aqueous	IC	P 7300	02/06/17	02/07/17	11:56	170206SA9	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Cadmium	ND	5.000	4.729	95	5.066	101	75-125	7	0-20	
Lead	ND	5.000	4.746	95	5.108	102	75-125	7	0-20	
Zinc	ND	5.000	4.740	95	5.056	101	75-125	6	0-20	

Terraphase Engineering, Inc.			Date Received:			01/27/17
1404 Franklin Street, Suite 60	00		Work Order:			17-01-2401
Oakland, CA 94612-3215			Preparation:			EPA 3050B
			Method:			EPA 6010B
Project: ISRI MSR Treatability	y Study / 0102.001.003					Page 1 of 1
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
SMM-1-1-M	Sample	Solid	ICP 7300	01/31/17 00:00	02/01/17 13:02	170131S04
SMM-1-1-M	PDS	Solid	ICP 7300	01/31/17 00:00	02/01/17 13:05	170131S04

SIVIN-1-1-IVI	PD5		50	lia	ICP 7300	01/31/	17 00:00 02/0	1/17 13:0	5 170131504	
SMM-1-1-M	PDSD		So	lid	ICP 7300	01/31/	17 00:00 02/0	1/17 13:0	6 170131S04	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>PDS</u> Conc.	<u>PDS</u> <u>%Rec.</u>	PDSD Conc.	PDSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Cadmium	9.359	250.0	260.5	100	265.0	102	75-125	2	0-20	
Lead	656.1	250.0	919.0	105	924.7	107	75-125	1	0-20	
Zinc	20470	250.0	21270	4X	21310	4X	75-125	4X	0-20	Q

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Sample Duplicate

Terraphase Engineering, Inc.	Date Received:	01/27/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2401
Oakland, CA 94612-3215	Preparation:	N/A
	Method:	ASTM D-2216 (M)
Project: ISRI MSR Treatability Study / 0102.001.003		Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
SMM-1-1-M	Sample	Solid	N/A	02/04/17 00:00	02/04/17 17:00	H0204MOID1
SMM-1-1-M	Sample Duplicate	Solid	N/A	02/04/17 00:00	02/04/17 17:00	H0204MOID1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Moisture		36.00	35.10	3	0-10	

🛟 eurofins Calscience

Terraphase Engineering, Inc.	Date Received:	01/27/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2401
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.0	003	Page 1 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed LCS	Batch Number
097-01-002-24274	LCS	Solid	ICP 7300	01/31/17	02/01/17 11:49 17013	31L04
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. <u>%Rec. CL</u>	<u>Qualifiers</u>
Cadmium		25.00	24.39	98	80-120	
Lead		25.00	24.09	96	80-120	
Zinc		25.00	23.86	95	80-120	

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins Calscience

Terraphase Engineering, Inc.	Date Received:	01/27/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2401
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.003		Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-05-006-8906	LCS	Aqueous	ICP 7300	02/03/17	02/07/17 11:51	170206LA9
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. <u>%Rec.</u>	CL Qualifiers
Cadmium		5.000	5.243	105	80-120	
Lead		5.000	5.186	104	80-120	
Zinc		5.000	5.437	109	80-120	

RPD: Relative Percent Difference. CL: Control Limits

Page 1 of 1

Calscience

Work Order: 17-01-2401

Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-2216 (M)	N/A	1050	N/A	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 6010B	T22.11.5. All	935	ICP 7300	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Page 1 of 1

Calscience

Work Order: 17-01-2401

Glossary of Terms and Qualifiers

<u>Qualifiers</u>	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

CORD									inne eksen son ster det det		h:											F		0 01 0	31
		г 7			Contra 14	graden								-									Time: \\\:001	Time:	Time:
N OF CUST	5/2017	0	P.O. NO.:		SAMPLER(S): (PF	Day Ru	YSES																ite: 1/26/2017	te: 127/17	ite:
CHAIN	DATE: 1 /2	PAGE:		3		@terraphase.com	ESTED ANAL	h blank as needed.		*****													<u>C</u>	De	
				study / 0102.001.00		7179 emily.mosen	REQU	se check box or fill i															2373326)		
	A.LAB.USE DNLY	1-01-24	IT PROJECT NAME / NUM	RI MSR Treatability 5	ECT CONTACT:	ily Mosen: 510-779-		Plea	9122	0103 A (C MT2A	FP) rZ ,d9 II-A.8.11.52 v yd tn9troo	T Cd, isture o	S & C	X X	XX	××	メメ	XX	XX	XX	XX		ion) #77828;	(uo	(uo)
) N		CLIE	L S	PRO.	E E				(0	n (FPA 601	Z '9d	Cq'	X	×	×	メ	\times	X	\mathbf{X}	X		ure/Affiliat c\Ci vo	ure/Affiliat	ure/Affiliat
						94612		ģ	CODE:		p	971926	ь. Ъre										oy: (Signat ⊁ [Τνα	oy: (Signat	y: (Signal
						ė.	e.com				рәл.	bresei	uŊ	X	X	X	X	×	X	\times	×		eceived b Fede	eceived b	eceived b
		or hot				CA ZI	erraphas	Not	X			ġ b	CONT.	*******	-			-	-	-	-		<u>к</u>	Ω.	2
			IIIOO enelliiOin			STATE: (ily.mosen@t		STAUCE			MATRIX		Solid	Solid	201.d	Solid	Solid	Solid	Solid	solid	 			
	DCe	t) 895-5494	2012201220122002				em	STANDARD"):				PLING	TIME	0.011	1100	1200	1200	1300	1300	0.0 1-1	aohi				
	Calscie	41-1427 • (71	inauon, contact igineering		e 600		E-MAIL:	ply to any TAT not				SAM	DATE	1/22/17	+1/57/1	11/57/12	1/25/17	41/22/17	1/25/17	1/15/17	1/121/1				
- urc ns		Jin Way, Garden Grove, CA 928	I SERVICE / SAILIPIE ULOP OIL MILOUIL ORY CLIENT: Terraphase En		7404 Fraklin Street, Suite	akland	10-645-1850	JUND TIME (Rush surcharges may apt	ME UAY LI 24 HK LI ELT EDF GLOBALID:	INSTRUCTIONS:			OAMITLE ID	M-1-2-MWS	MM-2M-1-0	M-2-2-WW!	N-2-W7-WWS	3MM-2-3-M	W-2M-3-U	M-4-2-WW	3MM-2M-4-U	-	Man and a man	sheb by: (\$ighature)	shed by: (Signature)
	© •	7440 Linc	LABORAT	ADDRESS		CITY: O	TEL: 5			SPECIAL		LAB	ONLY		d d	3	4	<i>V</i>	e e	5	X		Relindu	Relingu	Relinqui

.

Return to Contents

•

	eurc					•					วั	HAIN O	DF CUSTO	DY CO	RD
)	<u>°</u> ;	ilscience		·			WC#/I	AB.USE.OI	۲. ۲ ۱۳۰۲ - ۲		DATE:	1/25	117		
7440 Li. For cou	ncoln Way, Garden Grove, CA 92841-1 ¹ rier service / sample drop off information	427 • (714) 895-5494 ٦. contact us26 sales@	eurofinsus.com	or call us.					$\bar{\mathcal{O}}$	107	PAGE:	С	OF	2	
LABOF	KATORY CLIENT: Terraphase Engine	ering					CLIENT	PROJECT I	VAME / NUMBI	ER: dv / 0102 001	£ 00		P.O. NO.:		
ADDRE	SS: 1404 Fraklin Street, Suite 600	(PROJEC	T CONTAC			C nn'i		SAMPLĘR(S): (PRINT	~~(
CITY:	Oakland		STATE:	CA ZIP:	946	12	Emily	Mosen:	510-779-71	179 emily.mos	ien@terraphase	com	Matt 1-4 Dan Ruan	Huer	
TEL:	510-645-1850	AIL: er	nily.mosen@t	erraphase.(mox					REC	QUESTED A	NALYS	ES .	>	
TURN/	ROUND TIME (Rush surcharges may apply to a	any TAT not "STANDARD"): LID 77 LID		M CTAN					Please) check box or	fill in blank as nee	eded.			
						i i i	,	5216							
SPECI	AL INSTRUCTIONS:						010) 0109 AG	(II) A MT2A Y							
					p pən.	ered	n (EPA 60	-A.5.11.5.							
LAB		SAMPLING		NO.	ieserve serve	alifi b	Pb, Z	SR T2							
ONLY	SAMPLE ID	DATE TIME	MATRIX	CONT.	Dnr Pre	ləi7	ME⊥ Cq'	S S Nois							
٥-	1 W-2-2-WWS	125/17/500	50120		X		X	XX							
0	2MM-2M-2-0 11	25/17 1500	solid	_	×		X	メメ							
-	SMM-2-6-M 1/2	5/17 1600	Solid		×		Ŕ	× ×							
2	SMM-2M-6-U 1/2	5/17 1600	Solid	_			R	X X							
\overline{C}	SMM-2-7-M 1/2	13/17 1700	Solia	_	×		$\frac{2}{X}$		-						
14	1/1 N-L-W-Z-WWS	15/17 1700	Solid		×		· ع	$\frac{\times}{\times}$							
$\tilde{\mathcal{N}}$	SMM-2-8-M MS	15/17 1800	solid		X		X	\mathbf{X}							
16	NN-2-W-8-U 11/1	15/17 1800	Salid	_	X		X	\times							
															P
Relinc	Wert Hetheran			Rec	ived by: (s ελεχ (Signature/. Τν α c\C	Affiliation	(+77	8282	37360	(ح	Date:	26/2017	Time: 11:00 AV	age 2
Relinc	thished byA(Signature) [\]	~		Rece	ived by: (f	Signature/	Affiliation			64		Date: 1/27	<i><i><i>EIIt</i></i></i>	Time:	7 of 3
Relinc	quished by: (Signature)			Rece	ived by: (S	signature/	Affiliation					Date:		Time:	1
				_											1 :

06/02/14 Revision

Return to Contents

Page 28 of 31

💸 eurofins			WORK ORDER	R NUMBER:	Page 17-0	e 29 of 3 ⁻ 1- 2	101
	Calscience	SAMPLE RECEIPT	CHECKLIST	С	OOLER	<u> </u>	₀ _F _O
CLIENT: Terra	phase 6	ing'g.		DA	re: 01	1 <u>27</u> 1	2017
TEMPERATURE: (C Thermometer ID: SC Sample(s) outs Sample(s) outs Sample(s) receive Ambient Temperatur	Criteria: 0.0°C – 6. C3B (CF: 0.0°C); 1 side temperature of side temperature of ed at ambient tem re: □ Air □ Filter	0°C, not frozen except sedim emperature (w/o CF): <u>'9</u> criteria (PM/APM contacted b criteria but received on ice/ch perature; placed on ice for tra	nent/tissue) °C (w/ CF):/ by:83.6_) hilled on same day c ansport by courier	ୁ ପ_ୁ ୁ C; ୮ of sampling] Blank _, Checke	Samp	ole 3.6
CUSTODY SEAL: Cooler	sent and Intact sent and Intact	 Present but Not Intact Present but Not Intact 	D Not Present	□ N/A □ N/A	Checko Checko	ed by: <u>87</u> ed by: <u></u>	5.6 76
SAMPLE CONDITIO Chain-of-Custody (C COC document(s) re	DN: COC) document(s) eceived complete □ Sampling tim	e □ Matrix □ Number of c	ontainers		Yes	No	N/A □ □
□ No analysis re Sampler's name ind Sample container la Sample container(s) Proper containers fo	quested D Not r icated on COC bel(s) consistent v intact and in goo	elinquished D No relinquish with COC d condition	ned date □ No relir	nquished time			
Sufficient volume/ma Samples received w Aqueous sample	ass for analyses r ithin holding time s for certain analy al Chlorine □Di	equested ses received within 15-minut	e holding time d Oxygen				
Proper preservation Unpreserved aqu □ Volatile Organ	chemical(s) noted leous sample(s) r ics □ Total Meta	d on COC and/or sample con eceived for certain analyses als □ Dissolved Metals	tainer				Ø
Container(s) for cert □ Volatile Organ □ Carbon Dioxid	ain analysis free o ics □ Dissolved e (SM 4500) □ I	of headspace Gases (RSK-175) □ Dissol Ferrous Iron (SM 3500) □ F	lved Oxygen (SM 45 lydrogen Sulfide (H	500) ach)		, LI	طر /
Tedlar™ bag(s) free	of condensation		(Trip Blaı	nk Lot Numb	er:))
Aqueous: □ VOA [□ 125PBznna □ 25 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ 0 Container: A = Amber	 	na₂ □ 100PJ □ 100PJna₂ □ B □ 250CGBs □ 250PB □ AGBs □ 1PB □ 1PBna □ ZCGJ □ Sleeve () □ □ nt Tube □ PUF □	□ 125AGB □ 125A □ 250PBn □ 500AC 1 □ EnCores [®] () □ Other Matrix (= Jar, P = Plastic, and as = NasSoOs p = HeF	GBh □ 125A GB □ 500AG TerraCores [®] Cores	GBp □ J □ 500 () J □ sealable E	125PB AGJs I Bag ed by:	-PJ 876
Preservative: $\mathbf{b} = \text{buff}$ $\mathbf{s} = \text{H}_2\text{S}$	O_4 , u = ultra-pure, x	$x = Na_2SO_3 + NaHSO_4.H_2O, znna$	$= Zn (CH_3CO_2)_2 + Na$	оц, сароне аОН	Review	ed by:	trg

💸 eurofins			WORK ORDER	NUMBER:	Page 17-0	30 of 3 1 – <u>2</u> /	1 40/
	Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLER	0	OF O
CLIENT: TEM	aphase	Engig.		DA	TE: 01	127	/ 2017
TEMPERATURE: (C Thermometer ID: SC Sample(s) outs Sample(s) outs	J Criteria: 0.0°C – 6. Carlon (CF: 0.0°C); T side temperature of side temperature of ad at ambient temperature of the temperature of temperatur	0°C, not frozen except sedim remperature (w/o CF): _/ ? priteria (PM/APM contacted b criteria but received on ice/ch	nent/tissue) ・	<i>I 9-7</i> _{°C;} of sampling	Blank	∠ Sam	ple
Ambient Temperatur	re:	perature, placed on loe for at			Checke	ed by:	836
CUSTODY SEAL: Cooler	esent and Intact	□ Present but Not Intact □ Present but Not Intact	Dox 2/2 Not Present	 □ N/A □ N/A	Checke Checke	əd by: əd by:	876 876
SAMPLE CONDITIC Chain-of-Custody (C COC document(s) re Sampling date	DN: COC) document(s) eceived complete □ Sampling time	received with samples e □ Matrix □ Number of c	containers		Yes . ⊿ . ⊉	No □ □	N/A
Sampler's name indi Sample container lat Sample container(s) Proper containers fo Sufficient volume/ma Samples received w	icated on COC bel(s) consistent w intact and in good or analyses reques ass for analyses re	vith COC d condition					
Aqueous samples □ pH □ Residu Proper preservation Unpreserved aqu	s for certain analys al Chlorine □ Dis chemical(s) notec leous sample(s) re ics. □ Total Meta	ses received within 15-minute ssolved Sulfide □ Dissolved d on COC and/or sample con eceived for certain analyses	e holding time d Oxygen tainer		. 🗆		Þ Þ
Container(s) for certa	ain analysis free c ics	of headspace Gases (RSK-175) □ Dissol Ferrous Iron (SM 3500) □ H	ved Oxygen (SM 45	;00) ach)	. 🗆		Æ
Tedlar™ bag(s) free	of condensation				. 🗆		æ
CONTAINER TYPE: Aqueous: □ VOA □ 125PBznna □ 25 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ C Container: A = Amber,	: J VOAh □ VOAn 50AGB □ 250CGE □ 1AGBna₂ □ 1 J 8ozCGJ □ 16oz Canister □ Sorber , B = Bottle, C = Cle	a₂ □ 100PJ □ 100PJna₂ □ 3 □ 250CGBs □ 250PB □ AGBs □ 1PB □ 1PBna □ :CGJ □ Sleeve () □ E nt Tube □ PUF □ ear, E = Envelope, G = Glass, J	(Trip Blan ☐ 125AGB □ 125AG] 250PBn □ 500AG 	I k Lot Numb GBh □ 125A B □ 500AG □ I TerraCores [®]): [I z = Ziploc/Re	er: \GBp	125PB AGJs <u>7 1 - 5</u> ag)
Preservative: b = buffe s = $H_2S($	Fired, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \mathbf{O}_4$, $\mathbf{u} = \text{ultra-pure}$, \mathbf{x}	HCl, n = HNO ₃ , na = NaOH, na = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna	a₂ = Na₂S₂O₃, p = H₃P = Zn (CH₃CO₂)₂ + Na	O₄, Labele OH	d/Checke Reviewe	ed by: ed by:	5 3/6 673

Work Order Number	Request	Original sample ID	Corrected sample ID
		SMM-5H-1-U	SMM-4H-1-U
		SMM-5-1-H	SMM-4-1-H
		SMM-5H-2-U	SMM-4H-2-U
		SMM-5-2-H	SMM-4-2-H
		SMM-5H-3-U	SMM-4H-3-U
		SMM-5-3-H	SMM-4-3-H
		SMM-5H-4-U	SMM-4H-4-U
17-01-2301	Change prefix from "SMM-5 to	SMM-5-4-H	SMM-4-4-H
	SMM-4"	SMM-5H-5-U	SMM-4H-5-U
		SMM-5-5-H	SMM-4-5-H
		SMM-5H-6-U	SMM-4H-6-U
		SMM-5-6-H	SMM-4-6-H
		SMM-5H-7-U	SMM-4H-7-U
		SMM-5-7-H	SMM-4-7-H
		SMM-5H-8-U	SMM-4H-8-U
		SMM-5-8-H	SMM-4-8-H
		SMM-2M-1-U	SMM-1M-1-U
		SMM-2-1-M	SMM-1-1-M
		SMM-2M-2-U	SMM-1M-2-U
		SMM-2-2-M	SMM-1-2-M
		SMM-2M-3-U	SMM-1M-3-U
		SMM-2-3-M	SMM-1-3-M
		SMM-2M-4-U	SMM-1M-4-U
17-01-2401	Change prefix from "SMM-2 to	SMM-2-4-M	SMM-1-4-M
	SMM-1"	SMM-2M-5-U	SMM-1M-5-U
		SMM-2-5-M	SMM-1-5-M
		SMM-2M-6-U	SMM-1M-6-U
		SMM-2-6-M	SMM-1-6-M
		SMM-2M-7-U	SMM-1M-7-U
		SMM-2-7-M	SMM-1-7-M
		SMM-2M-8-U	SMM-1M-8-U
		SMM-2-8-M	SMM-1-8-M
		SMM-5L-1-U	SMM-4L-1-U
		SMM-5-1-L	SMM-4-1-L
		SMM-5L-2-U	SMM-4L-2-U
		SMM-5-2-L	SMM-4-2-L
		SMM-5L-3-U	SMM-4L-3-U
		SMM-5-3-L	SMM-4-3-L
		SMM-5L-4-U	SMM-4L-4-U
17-01-2544	Change prefix from "SMM-5 to	SMM-5-4-L	SMM-4-4-L
17 01 2344	SMM-4"	SMM-5L-5-U	SMM-4L-5-U
		SMM-5-5-L	SMM-4-5-L
		SMM-5L-6-U	SMM-4L-6-U
		SMM-5-6-L	SMM-4-6-L
		SMM-5L-7-U	SMM-4L-7-U
		SMM-5-7-L	SMM-4-7-L
		SMM-5L-8-U	SMM-4L-8-U
		SMM-5-8-L	SMM-4-8-L

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 17-01-2544

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Terraphase Engineering, Inc. Client Project Name: ISRI MSR Treatability Study / 0102.001.00 Attention: Emily Mosen 1404 Franklin Street

Suite 600 Oakland, CA 94612-3215

Approved for release on 02/13/2017 by: Don Burley Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🔅 eurofins

Calscience

Contents

Client Proj Work Orde	ect Name: er Number:	ISRI MSR Treatability Study / 0102.001.00 17-01-2544	
1	Work Ord	der Narrative	3
2	Sample S	Summary	4
3	Client Sa	mple Data	5
	3.1 AST	M D-2216 (M) Moisture Content (Solid)	5
	3.2 EPA	6010B ICP Metals (Solid).	8
	3.3 EPA	6010B STLC ICP Metals (Aqueous).	12
4	Quality C	Control Sample Data	18
	4.1 MS/	MSD	18
	4.2 Sam	ple Duplicate	20
	4.3 LCS	/LCSD	21
5	Sample A	Analysis Summary	23
6	Glossary	of Terms and Qualifiers	24
7	Chain-of-	Custody/Sample Receipt Form	25

Work Order: 17-01-2544

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 01/30/17. They were assigned to Work Order 17-01-2544.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

The report has been revised to change the sample IDs.

Return to Contents

Return to Contents

Client:	Terraphase Engineering, Inc.	Work Order:	17-01-2544
	1404 Franklin Street, Suite 600	Project Name:	ISRI MSR Treatability Study / 0102.001.00
	Oakland, CA 94612-3215	PO Number:	
		Date/Time Received:	01/30/17 13:30
		Number of Containers:	16
Attn:	Emily Mosen		

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SMM-4-1-L	17-01-2544-1	01/26/17 11:00	1	Solid
SMM-4-2-L	17-01-2544-2	01/26/17 12:00	1	Solid
SMM-4-3-L	17-01-2544-3	01/26/17 13:00	1	Solid
SMM-4-4-L	17-01-2544-4	01/26/17 14:00	1	Solid
SMM-4L-1-U	17-01-2544-5	01/26/17 11:00	1	Solid
SMM-4L-2-U	17-01-2544-6	01/26/17 12:00	1	Solid
SMM-4L-3-U	17-01-2544-7	01/26/17 13:00	1	Solid
SMM-4L-4-U	17-01-2544-8	01/26/17 14:00	1	Solid
SMM-4-5-L	17-01-2544-9	01/26/17 15:00	1	Solid
SMM-4-6-L	17-01-2544-10	01/26/17 16:00	1	Solid
SMM-4-7-L	17-01-2544-11	01/26/17 17:00	1	Solid
SMM-4-8-L	17-01-2544-12	01/26/17 18:00	1	Solid
SMM-4L-5-U	17-01-2544-13	01/26/17 15:00	1	Solid
SMM-4L-6-U	17-01-2544-14	01/26/17 16:00	1	Solid
SMM-4L-7-U	17-01-2544-15	01/26/17 17:00	1	Solid
SMM-4L-8-U	17-01-2544-16	01/26/17 18:00	1	Solid

Terraphase Engineering, Inc.			Date Re	eceived:			01/30/17
1404 Franklin Street, Suite 600	Work Order:				17-01-2544		
Oakland, CA 94612-3215		Prepara	tion:			N/A	
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Stud	y / 0102.001.00					Pa	ge 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-4-1-L	17-01-2544-1-A	01/26/17 11:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		Result		RL	DF	Qua	alifiers
Moisture		45		0.10	1.00		
SMM-4-2-L	17-01-2544-2-A	01/26/17 12:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		Result		RL	DF	Qua	alifiers
Moisture		40		0.10	1.00		
SMM-4-3-L	17-01-2544-3-A	01/26/17 13:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		Result	-	RL	DF	Qua	alifiers
Moisture		37		0.10	1.00		
SMM-4-4-L	17-01-2544-4-A	01/26/17 14:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		34		0.10	1.00		
SMM-4L-1-U	17-01-2544-5-A	01/26/17 11:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		40		0.10	1.00		
SMM-4L-2-U	17-01-2544-6-A	01/26/17 12:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		41		0.10	1.00		
SMM-4L-3-U	17-01-2544-7-A	01/26/17 13:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		36		0.10	1.00		
SMM-4L-4-U	17-01-2544-8-A	01/26/17 14:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		36		0.10	1.00		

Terraphase Engineering, Inc.			Date Re	ceived:			01/30/17	
1404 Franklin Street, Suite 600			Work O	rder:		17-01-2544		
Oakland, CA 94612-3215			Prepara	tion:			N/A	
			Method:			AST	M D-2216 (M)	
			Units:				%	
Project: ISRI MSR Treatability Stud	ły / 0102.001.00					Pa	ige 2 of 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SMM-4-5-L	17-01-2544-9-A	01/26/17 15:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		Result		RL	DF	Que	alifiers	
Moisture		40		0.10	1.00			
SMM-4-6-L	17-01-2544-10-A	01/26/17 16:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Moisture		38		0.10	1.00			
SMM-4-7-L	17-01-2544-11-A	01/26/17 17:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		Result	-	<u>RL</u>	DF	Qua	alifiers	
Moisture		36		0.10	1.00			
SMM-4-8-L	17-01-2544-12-A	01/26/17 18:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Moisture		35		0.10	1.00			
SMM-4L-5-U	17-01-2544-13-A	01/26/17 15:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Moisture		30		0.10	1.00			
SMM-4L-6-U	17-01-2544-14-A	01/26/17 16:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		Result		<u>RL</u>	DF	Qua	alifiers	
Moisture		41		0.10	1.00			
SMM-4L-7-U	17-01-2544-15-A	01/26/17 17:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		Result		<u>RL</u>	DF	Qua	alifiers	
Moisture		36		0.10	1.00			
SMM-4L-8-U	17-01-2544-16-A	01/26/17 18:00	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Moisture		39		0.10	1.00			

Moisture

Terraphase Engineering, Inc.			Date Rece	eived:			01/30/17		
1404 Franklin Street, Suite 600			Work Ord	er:		17-01-2			
Oakland, CA 94612-3215			Preparatio	on:					
			Method:			AST	M D-2216 (M)		
			Units:				%		
Project: ISRI MSR Treatability S	Study / 0102.001.00					Pa	age 3 of 3		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Method Blank	099-05-014-6674	N/A	Solid	N/A	02/04/17	02/04/17 17:00	H0204MOIB2		
Parameter		Result	<u> </u>	RL	DF	Qua	alifiers		

0.10

1.00

ND

Analytical Report

Terraphase	Engineering, Inc.			Date Re	ceived:			01/30/17
1404 Frankli	n Street, Suite 600			Work Or	der:		17-01-2544	
Oakland, CA	94612-3215			Prepara	tion:			EPA 3050B
				Method:				EPA 6010B
				Units:				ma/ka
Project: ISRI	MSR Treatability Study	y / 0102.001.00					Pa	ige 1 of 4
Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-4-1-L		17-01-2544-1-A	01/26/17 11:00	Solid	ICP 7300	02/03/17	02/06/17 11:58	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from n	natrix interfere	nce.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			8.49		4.81	9.62		
Lead			322		4.81	9.62		
Zinc			6440		9.62	9.62		
SMM-4-2-L		17-01-2544-2-A	01/26/17 12:00	Solid	ICP 7300	02/03/17	02/06/17 11:59	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from n	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			42.5		4.85	9.71		
Lead			1170		4.85	9.71		
Zinc			10300		9.71	9.71		
SMM-4-3-L		17-01-2544-3-A	01/26/17 13:00	Solid	ICP 7300	02/03/17	02/06/17 12:00	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from n	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			15.1		4.78	9.57		
Lead			722		4.78	9.57		
Zinc			8450		9.57	9.57		
SMM-4-4-L		17-01-2544-4-A	01/26/17 14:00	Solid	ICP 7300	02/03/17	02/06/17 12:01	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from n	natrix interfere	nce.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			9.43		4.83	9.66		
Lead			782		4.83	9.66		
Zinc			10500		9.66	9.66		
SMM-4L-1-U		17-01-2544-5-A	01/26/17 11:00	Solid	ICP 7300	02/03/17	02/06/17 12:02	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from n	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			11.1		4.81	9.62		
Lead			564		4.81	9.62		
Zinc			9640		9.62	9.62		
			00.0					

Terraphase I	Engineering, Inc.			Date Re	ceived:			01/30/17
1404 Frankli	n Street, Suite 600			Work Or	der:			17-01-2544
Oakland, CA	94612-3215			Prepara	tion:			EPA 3050B
				Method:				EPA 6010B
				Units:				mg/kg
Project: ISRI	MSR Treatability Study	/ / 0102.001.00					Pa	ge 2 of 4
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-4L-2-U		17-01-2544-6-A	01/26/17 12:00	Solid	ICP 7300	02/03/17	02/06/17 12:02	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			26.8		4.76	9.52		
Lead			1220		4.76	9.52		
Zinc			10800		9.52	9.52		
SMM-4L-3-U		17-01-2544-7-A	01/26/17 13:00	Solid	ICP 7300	02/03/17	02/06/17 12:05	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			22.0		4.88	9.76		
Lead			871		4.88	9.76		
Zinc			10500		9.76	9.76		
SMM-4L-4-U		17-01-2544-8-A	01/26/17 14:00	Solid	ICP 7300	02/03/17	02/06/17 12:06	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>
Cadmium			10.7		4.78	9.57		
Lead			687		4.78	9.57		
Zinc			8270		9.57	9.57		
SMM-4-5-L		17-01-2544-9-A	01/26/17 15:00	Solid	ICP 7300	02/03/17	02/06/17 12:07	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	ence.				
Parameter			Result		<u>RL</u>	DF	Qua	<u>llifiers</u>
Cadmium			12.4		4.93	9.85		
Lead			860		4.93	9.85		
Zinc			9650		9.85	9.85		
SMM-4-6-L		17-01-2544-10-A	01/26/17 16:00	Solid	ICP 7300	02/03/17	02/06/17 12:08	170203L03
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			14.1		4.85	9.71		
Lead			1290		4.85	9.71		
Zinc			10100		9.71	9.71		

T	F			Data Da				04/20/47
Terraphase I	Engineering, Inc.			Date Re	ceivea:	01/30/17		
1404 Frankli	n Street, Suite 600			Work O	rder:			17-01-2544
Oakland, CA	94612-3215			Prepara	tion:			EPA 3050B
				Method:				EPA 6010B
				Units:				mg/kg
Project: ISRI	MSR Treatability Stud	y / 0102.001.00					Pa	ige 3 of 4
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-4-7-L		17-01-2544-11-A	01/26/17 17:00	Solid	ICP 7300	02/03/17	02/06/17 12:09	170203L03
Comment(s):	- The reporting limit is eleve	ated resulting from m	atrix interfere	nce.				,
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			9.43		4.76	9.52		
Lead			711		4.76	9.52		
Zinc			9250		9.52	9.52		
SMM-4-8-L		17-01-2544-12-A	01/26/17 18:00	Solid	ICP 7300	02/03/17	02/06/17 12:10	170203L03
Comment(s):	- The reporting limit is eleve	ated resulting from m	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			10.1		4.88	9.76		
Lead			905		4.88	9.76		
Zinc			8530		9.76	9.76		
SMM-4L-5-U		17-01-2544-13-A	01/26/17 15:00	Solid	ICP 7300	02/03/17	02/06/17 12:11	170203L03
Comment(s):	- The reporting limit is eleve	ated resulting from m	atrix interfere	nce.	·	·	·	
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			33.4		4.83	9.66		
Lead			683		4.83	9.66		
Zinc			10800		9.66	9.66		
SMM-41-6-11		17-01-25//-1/-0	01/26/17	Solid	ICP 7300	02/03/17	02/06/17	1702031 03
SWIW-4L-0-0		17-01-2344-14-A	16:00	30110		02/03/11	12:12	170203203
Comment(s):	- The reporting limit is eleve	ated resulting from m	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			8.19		4.93	9.85		
Lead			1020		4.93	9.85		
Zinc			7770		9.85	9.85		
SMM-4L-7-U		17-01-2544-15-A	01/26/17 17:00	Solid	ICP 7300	02/03/17	02/06/17 12:13	170203L03
Comment(s):	- The reporting limit is eleve	ated resulting from m	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			11.8		4.85	9.71		
Lead			2290		4.85	9.71		
Zinc			13300		9.71	9.71		

Return to Contents

Terraphase Engineering, Inc.			Date Rec	eived:			01/30/17	
1404 Franklin Street, Suite 600			Work Ord	ler:		17-01-2544		
Oakland, CA 94612-3215			Preparati	on:			EPA 3050B	
			Method:				EPA 6010B	
			Units:				mg/kg	
Project: ISRI MSR Treatability Stu	dy / 0102.001.00					Pa	ge 4 of 4	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SMM-4L-8-U	17-01-2544-16-A	01/26/17 18:00	Solid	ICP 7300	02/03/17	02/06/17 12:14	170203L03	
Comment(s): - The reporting limit is ele	evated resulting from m	atrix interfere	ence.			·		
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	DF	Qua	lifiers	
Cadmium		15.0	4	4.90	9.80			
Lead		2030	4	4.90	9.80			
Zinc		12400	9	9.80	9.80			
Mathad Blank	007 01 002 24209		Solid	ICD 7200	02/02/17	02/06/17	4700001.00	

	097-01-002-24308	10/A 301		02/03/17	11:54	
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Cadmium		ND	0.478	0.957		
Lead		ND	0.478	0.957		
Zinc		ND	0.957	0.957		

Terraphase	Engineering, Inc.			Date Re	ceived:			01/30/17
1404 Frankli	n Street, Suite 600			Work O	der:			17-01-2544
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All
				Method:				EPA 6010B
				Units:				mg/L
Project: ISRI	MSR Treatability Stuc	ly / 0102.001.00					Pa	ge 1 of 6
Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-4-1-L		17-01-2544-1-A	01/26/17 11:00	Solid	ICP 7300	02/01/17	02/03/17 17:02	170203LA3
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the sampl	e.				
Parameter			Result		<u>RL</u>	DF	Qua	<u>lifiers</u>
Cadmium			ND		0.100	1.00		
Lead			0.468		0.100	1.00		
Zinc			4.79		0.100	1.00		
SMM-4-2-L		17-01-2544-2-A	01/26/17 12:00	Solid	ICP 7300	02/01/17	02/03/17 17:02	170203LA3
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the sampl	e.				
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	lifiers
Cadmium			1.04		0.100	1.00		
Lead			37.1		0.100	1.00		
SMM-4-2-L		17-01-2544-2-A	01/26/17 12:00	Solid	ICP 7300	02/01/17	02/06/17 15:56	170203LA3
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the sampl	e.			·	
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>
Zinc			519		1.00	10.0		
SMM-4-3-L		17-01-2544-3-A	01/26/17 13:00	Solid	ICP 7300	02/01/17	02/03/17 17:12	170203LA3
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the sampl	e.			·	
Parameter			Result		<u>RL</u>	DF	Qua	<u>llifiers</u>
Cadmium			1.10		0.100	1.00		
Lead			37.9		0.100	1.00		
SMM-4-3-L		17-01-2544-3-A	01/26/17 13:00	Solid	ICP 7300	02/01/17	02/06/17 15:57	170203LA3
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the sampl	е.				
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	lifiers
Zinc			562		1.00	10.0		

Terraphase Engineering, Inc.			Date Re	ceived:			01/30/17
1404 Franklin Street, Suite 60	00		Work Or	rder:		17-01-2544	
Oakland, CA 94612-3215			Prepara	tion:			T22.11.5. All
			Method:				EPA 6010B
			Units:				mg/L
Project: ISRI MSR Treatabilit	y Study / 0102.001.00					Pa	ge 2 of 6
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-4-4-L	17-01-2544-4-A	01/26/17 14:00	Solid	ICP 7300	02/01/17	02/03/17 17:13	170203LA3
Comment(s): - The analysis was	performed on a STLC extra	ct of the sample	э.				
Parameter		Result		<u>RL</u>	DF	Qua	lifiers
Cadmium		0.803		0.100	1.00		
Lead		30.9		0.100	1.00		
SMM-4-4-L	17-01-2544-4-A	01/26/17 14:00	Solid	ICP 7300	02/01/17	02/06/17 15:58	170203LA3
Comment(s): - The analysis was	performed on a STLC extra	ct of the sample	э.				
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Zinc		532		1.00	10.0		
SMM-4L-1-U	17-01-2544-5-A	01/26/17 11:00	Solid	ICP 7300	02/01/17	02/03/17 17:14	170203LA3
Comment(s): - The analysis was	performed on a STLC extra	ct of the sample	e.				
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	<u>llifiers</u>
Cadmium		0.791		0.100	1.00		
Lead		32.3		0.100	1.00		
SMM-4L-1-U	17-01-2544-5-A	01/26/17 11:00	Solid	ICP 7300	02/01/17	02/06/17 15:59	170203LA3
Comment(s): - The analysis was	performed on a STLC extra	ct of the sample	э.				
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>
Zinc		584		1.00	10.0		
SMM-4L-2-U	17-01-2544-6-A	01/26/17 12:00	Solid	ICP 7300	02/01/17	02/03/17 17:15	170203LA3
Comment(s): - The analysis was	performed on a STLC extra	ct of the sample	e.				
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium		1.25		0.100	1.00		
Lead		55.2		0.100	1.00		
SMM-4L-2-U	17-01-2544-6-A	01/26/17 12:00	Solid	ICP 7300	02/01/17	02/06/17 16:00	170203LA3
Comment(s): - The analysis was	performed on a STLC extra	ct of the sample	ә.				
Parameter		Result		<u>RL</u>	DF	Qua	lifiers
Zinc		516		1.00	10.0		

Terraphase E	hase Engineering, Inc. Date Received:							01/30/17
1404 Franklir	n Street, Suite 600		,	Work O	rder:			17-01-2544
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All
				Method:				EPA 6010B
				Units:				mg/L
Project: ISRI	MSR Treatability Study	y / 0102.001.00					Pa	ge 3 of 6
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SMM-4L-3-U		17-01-2544-7-A	01/26/17 13:00	Solid	ICP 7300	02/01/17	02/03/17 17:16	170203LA3
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.				
Parameter			Result		<u>RL</u>	DF	Qua	<u>lifiers</u>
Cadmium			0.884		0.100	1.00		
Lead			33.1		0.100	1.00		
SMM-4L-3-U		17-01-2544-7-A	01/26/17 13:00	Solid	ICP 7300	02/01/17	02/06/17 16:01	170203LA3
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Zinc			518		1.00	10.0		
SMM-4L-4-U		17-01-2544-8-A	01/26/17 14:00	Solid	ICP 7300	02/01/17	02/03/17 17:18	170203LA3
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	Э.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			0.813		0.100	1.00		
Lead			38.4		0.100	1.00		
SMM-4L-4-U		17-01-2544-8-A	01/26/17 14:00	Solid	ICP 7300	02/01/17	02/06/17 16:02	170203LA3
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.	·			
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Zinc			672		1.00	10.0		
SMM-4-5-L		17-01-2544-9-A	01/26/17 15:00	Solid	ICP 7300	02/01/17	02/03/17 17:19	170203LA3
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	ə.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			0.824		0.100	1.00		
Lead			32.6		0.100	1.00		
SMM-4-5-L		17-01-2544-9-A	01/26/17 15:00	Solid	ICP 7300	02/01/17	02/06/17 16:03	170203LA3
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	Э.				
Parameter			Result		<u>RL</u>	DF	Qua	lifiers
Zinc			491		1.00	10.0		

Terraphase En	gineering, Inc.			Date Re	ceived:			01/30/17	
1404 Franklin	Street, Suite 600			Work Or	der:			17-01-2544	
Oakland, CA 9	4612-3215			Prepara	tion:			T22.11.5. All	
-				Method:				EPA 6010B	
				Units:				ma/L	
Project: ISRI M	ISR Treatability Study	y / 0102.001.00					Pa	ge 4 of 6	
Client Sample Nun	nber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SMM-4-6-L		17-01-2544-10-A	01/26/17 16:00	Solid	ICP 7300	02/01/17	02/03/17 17:20	170203LA3	
Comment(s): -	The analysis was perform	ed on a STLC extrac	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>	
Cadmium			0.606		0.100	1.00			
Lead			47.9		0.100	1.00			
SMM-4-6-L		17-01-2544-10-A	01/26/17 16:00	Solid	ICP 7300	02/01/17	02/06/17 16:04	170203LA3	
Comment(s): -	The analysis was perform	ed on a STLC extrac	ct of the samp	le.		·			
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>	
Zinc			540		1.00	10.0			
SMM-4-7-L		17-01-2544-11-A	01/26/17 17:00	Solid	ICP 7300	02/01/17	02/03/17 17:21	170203LA3	
Comment(s): -	The analysis was perform	ed on a STLC extrac	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>	
Cadmium			0.401		0.100	1.00			
Lead			23.5		0.100	1.00			
Zinc			363		0.100	1.00			
SMM-4-8-L		17-01-2544-12-A	01/26/17 18:00	Solid	ICP 7300	02/01/17	02/03/17 17:22	170203LA3	
Comment(s): -	The analysis was perform	ed on a STLC extrac	ct of the samp	le.					
Parameter			Result		<u>RL</u>	DF	Qua	<u>llifiers</u>	
Cadmium			0.644		0.100	1.00			
Lead			49.3		0.100	1.00			
SMM-4-8-L		17-01-2544-12-A	01/26/17 18:00	Solid	ICP 7300	02/01/17	02/06/17 16:05	170203LA3	
Comment(s): -	The analysis was perform	ed on a STLC extrac	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>	
Zinc			501		1.00	10.0			

Terraphase	Engineering, Inc.			Date Re	ceived:			01/30/17	
1404 Frankli	n Street, Suite 600			Work Or	der:			17-01-2544	
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All	
				Method:				EPA 6010B	
				Units:				mg/L	
Project: ISRI	MSR Treatability Stud	y / 0102.001.00					Pa	ige 5 of 6	
Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SMM-4L-5-U		17-01-2544-13-A	01/26/17 15:00	Solid	ICP 7300	02/01/17	02/03/17 17:23	170203LA3	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Cadmium			0.697		0.100	1.00			
Lead			25.9		0.100	1.00			
Zinc			420		0.100	1.00			
SMM-4L-6-U		17-01-2544-14-A	01/26/17 16:00	Solid	ICP 7300	02/01/17	02/03/17 17:24	170203LA3	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Cadmium			0.670		0.100	1.00			
Lead			70.0		0.100	1.00			
SMM-4L-6-U		17-01-2544-14-A	01/26/17 16:00	Solid	ICP 7300	02/01/17	02/06/17 17:25	170203LA3	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			Result		<u>RL</u>	DF	Qua	<u>alifiers</u>	
Zinc			720		1.00	10.0			
SMM-4L-7-U		17-01-2544-15-A	01/26/17 17:00	Solid	ICP 7300	02/01/17	02/03/17 17:25	170203LA3	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			Result		<u>RL</u>	DF	Qua	alifiers	
Cadmium			0.583		0.100	1.00			
Lead			46.0		0.100	1.00			
SMM-4L-7-U		17-01-2544-15-A	01/26/17 17:00	Solid	ICP 7300	02/01/17	02/06/17 17:26	170203LA3	
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the samp	le.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Zinc			506		1.00	10.0			

Terraphase Engineering, Inc.			Date Rece	eived:		01/30/17					
1404 Franklin Street, Suite 60	00		Work Orde	er:			17-01-2544				
Oakland, CA 94612-3215			Preparatio	on:			T22.11.5. All				
			Method:				EPA 6010B				
			Units:				mg/L				
Project: ISRI MSR Treatability	/ Study / 0102.001.00					Pa	age 6 of 6				
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID				
SMM-4L-8-U	17-01-2544-16-A	01/26/17 18:00	Solid	ICP 7300	02/01/17	02/03/17 17:26	170203LA3				
Comment(s): - The analysis was	performed on a STLC extra	ct of the sampl	le.								
Parameter	<u>Result</u>				DF	Qua	<u>alifiers</u>				
Cadmium		0.653	0	.100	1.00						
Lead		68.3	0	.100	1.00						
SMM-4L-8-U	17-01-2544-16-A	01/26/17 18:00	Solid	ICP 7300	02/01/17	02/06/17 17:27	170203LA3				
Comment(s): - The analysis was	performed on a STLC extra	ct of the sampl	le.								
Parameter		<u>Result</u>	F	<u>:L</u>	DF	Qua	<u>alifiers</u>				
Zinc		621	1	.00	10.0						
Method Blank	097-05-006-8900	N/A	Aqueous	ICP 7300	02/01/17	02/03/17 16:55	170203LA3				
Parameter		Result	<u> </u>	<u>:L</u>	DF	Qua	alifiers				
Cadmium		ND	0	.100	1.00						
Lead		ND	0	.100	1.00						
Zinc		ND	0	.100	1.00						

Quality Control - Spike/Spike Duplicate

Terraphase Engineering, Inc.	Date Received:	01/30/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2544
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.00		Page 1 of 2

Project: ISRI MSR Treatability Study / 0102.001.00

Quality Control Sample ID	D Туре			Instru	ument	Date Prepared	Date Ana	lyzed	MS/MSD Batch Number		
SMM-4-2-L	Sample		Solid	ICP 7	7300	02/03/17	02/06/17	11:59	170203S03		
SMM-4-2-L	Matrix Spike		Solid	ICP 7300		02/03/17	02/06/17	11:56	170203S03		
SMM-4-2-L	Matrix Spike Duplicate		Solid	ICP 7300		02/03/17 02/06/17		11:57	170203S03		
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers	
Cadmium	42.48	25.00	50.04	30	51.18	35	75-125	2	0-20	3	
Lead	1175	25.00	1358	4X	1360	4X	75-125	4X	0-20	Q	
Zinc	10320	25.00	10810	4X	10730	4X	75-125	4X	0-20	Q	

RPD: Relative Percent Difference. CL: Control Limits

Terraphase Engineering, Inc.	Date Received:	01/30/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2544
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.00		Page 2 of 2

Quality Control Sample ID	Туре	Matrix	In	strument	Date Prepared	Date Analyzed		MS/MSD Bat	ch Number	
17-02-0209-1	Sample		Aqueous	IC	P 7300	02/03/17	02/03/17	16:57	170203SA3	
17-02-0209-1	Matrix Spike		Aqueous	Aqueous ICP		02/03/17	02/03/17	16:58	170203SA3	
17-02-0209-1	Matrix Spike Duplicate		Aqueous	Aqueous IC		02/03/17	02/03/17	16:59	170203SA3	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Cadmium	ND	5.000	5.187	104	5.124	102	75-125	1	0-20	
Lead	ND	5.000	5.226	105	5.183	104	75-125	1	0-20	
Zinc	ND	5.000	5.329	107	5.263	105	75-125	1	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Sample Duplicate

Terraphase Engineering, Inc.	Date Received:	01/30/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2544
Oakland, CA 94612-3215	Preparation:	N/A
	Method:	ASTM D-2216 (M)
Project: ISRI MSR Treatability Study / 0102.001.00		Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
SMM-4L-1-U	Sample	Solid	N/A	02/04/17 00:00	02/04/17 17:00	H0204MOID2
SMM-4L-1-U	Sample Duplicate	Solid	N/A	02/04/17 00:00	02/04/17 17:00	H0204MOID2
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Moisture		39.80	42.50	7	0-10	

Qualifiers

80-120

🛟 eurofins Calscience

Zinc

Terraphase Engineering, Inc.	Date Received:	01/30/17			
1404 Franklin Street, Suite 600	Work Order:	17-01-2544			
Oakland, CA 94612-3215	Preparation:	EPA 3050B			
	Method:	EPA 6010B			
Project: ISRI MSR Treatability Study / 0102.001.00		Page 1 of 2			

22.26

89

Quality Control Sample ID Matrix Instrument Date Prepared Date Analyzed LCS Batch Number Туре 097-01-002-24308 LCS Solid 02/06/17 11:55 170203L03 ICP 7300 02/03/17 Parameter Spike Added Conc. Recovered LCS %Rec. %Rec. CL Cadmium 25.00 23.06 92 80-120 25.00 Lead 23.53 94 80-120

25.00

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins Calscience

Terraphase Engineering, Inc.	Date Received:	01/30/17
1404 Franklin Street, Suite 600	Work Order:	17-01-2544
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.00		Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed LCS B	atch Number
097-05-006-8900	LCS	Aqueous	ICP 7300	02/01/17	02/03/17 16:56 170203	3LA3
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. <u>%Rec. CL</u>	<u>Qualifiers</u>
Cadmium		5.000	5.126	103	80-120	
Lead		5.000	4.948	99	80-120	
Zinc		5.000	5.254	105	80-120	

RPD: Relative Percent Difference. CL: Control Limits

Page 1 of 1

Calscience

Work Order: 17-01-2544

Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-2216 (M)	N/A	1050	N/A	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 6010B	T22.11.5. All	935	ICP 7300	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Page 1 of 1

🛟 eurofins

Calscience

Glossary of Terms and Qualifiers

Work Order: 17-01-2544

Qualifiers Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit.

- C Solla receivery and RRD control limits do not apply reculting from the nero
- Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

			_																		 P	Page 2	25 of 3	30	
DDY CORD		2		N	than	D			······································													Time: , 11:00 AM	Time: /33 D	Time:	L 06/02/14 Revisior
IN OF CUST	26/2017) OF	P.O. NO.:	SAMPLER(S): (PRIN	" Mat Hat																	Date: \ 27 2017	Date: 1/30/17	Date:	
CHA		PAGE:	00	00.10	osen@terraphase.con	QUESTED ANA	or fill in blank as needed																cal		
	Х	2544	AME / NUMBER:		10-779-7179 emily.m	RE	Please check box (293037213)			
•	VV LABUSE ON		CLIENT PROJECT N	PROJECT CONTACT	Emily Mosen: 5			9122	((0109) 0108)	20103 A93 A93) nS ,((II-A.3.11 (II-A.3.11 (II-A.3.11)	.e coi '4' br '22' (Met C Wet C & CCR	XXX	メメメ	XXX	\times \times \times	メメメ	X X X	× × ×	メメ		ure/Affiliation) Ching #7787	ure/Affiliation)	ure/Affiliation)	4
					94612	mos	IDARD	LOG CODE:		p: p;	serve ved iltere	Unpres Preser	×	*	X	X	×	\times	X	×		eived by: (Signatu Fedex (Tva	eived by: (Signatu	eived by: (Signatu	
		or call us			CA ZIP:	terraphase.o	AK STAN					NO. OF CONT.		;	-		1	-	1	-		Reo	Reo	Reo	
		non susation			STATE:	ily.mosen@	1 5 DAYS					MATRIX	Solid	Solid	50/12	Solid	Solid	Kilas	Solid	Soltal					
	2 Ce) 895-5494 276 salas@e				em	STANDARD"): 72 HR [LING TIME	1100	1200	1300	non!	1100	1200	(300	00 h1					
	Calscie	41-1427 • (714	igineering	e 600		E-MAIL:	ply to any TAT not "					SAMF DATE	1/20/1	1/26/7	キリのマノハ	モリクセハ	F1/2/11	1/26/17	4102/1	F1/0/2/1					
eurc ins		440 Lincoln Way, Garden Grove, CA 928.	LABORATORY CLIENT: Terraphase En	ADDRESS: 1404 Fraklin Street, Suite	city: Oakland	TEL: 510-645-1850	TURNAROUND TIME (Rush surcharges may ap SAME DAY DAH H		SPECIAL INSTRUCTIONS:			LAB USE SAMPLE ID ONLY	1-1-2-WWS	2 SMM-5-2-L	3 SMM-5-3-L	4 SMM-5-4-L	N-1-79-WWS S	6 SMM-51-2-U	7 SMM-51-3-V	8 SMM-5L-4-U		Relinquisher by (Signer we)	Relinduished by: (\$ighature)	Relinquished by: (Signature)	

22

Return to Contents

.

eur ns						1	<u>.</u>			CH/	NIN OF CUST	DDY CORE	~
	Calscien	ce C					<u>W</u> O#./ <u>'LA</u>	B. USE DNLY	(DATE: 1	26/2017		I
²440 Lincoln Way, Garden Grove, CA 92≀ ⁼or courier service / sample drop off infor	341-1427 ◆ (714) 8 mation, contact us2	395-5494 26 sales@eur	ofinsus.com c	or call us.		<u></u>		~	(HHSZ)	PAGE:	A OF	r	1
LABORATORY CLIENT: Terraphase El	ngineering)					CLIENT P	ROJECT NAME	(/ NUMBER:		P.O. NO.:		
ADDRESS: 1404 Fraklin Street. Suit	e 600							CONTACT	illity Study / 0102.0	00.10	SAMPLER(S): (PRIN		
city: Oakland			STATE: C	A ZIP:	9461	5	Emily	Mosen: 510	-779-7179 emily.m	osen@terraphase.co	m Huan Or	Ruev	
TEL: 510-645-1850	E-MAIL:	emil	y.mosen@te	rraphase.c	mo				RE	QUESTED AN	ALYSES		T
TURNAROUND TIME (Rush surcharges may a	pply to any TAT not "ST	ANDARD"):							Please check box	or fill in blank as neede	id.		1
Image: Comparison of the compar	1 48 HR 1 7	2 HR	5 DAYS	AL STAN	LOG CODE			912					
					-		(220					
					pa Lveq	ered	Pb, Zn (EPA 6010) Pb, Zn (EPA 6010)	(II-A.3.11.SS MTSA vd treatro					
	SAMPLI	NG		NO.	serve	li Filt	<u>г Сq'</u> ГС	SR T		-			
	DATE	TIME	WALKIA	CONT.	InU ₉₁ 9	Fie	ME. Cqʻ	s c Moi					
9 SWM-5-5-L	- FNuur1	Hereison	p. los		X		\hat{X}	4 X					
10 SMM-5-6-L	1/11/17 -	12001lan	Salid		X		\overline{X}	8					1
1-E-2-MMS	1/126/17	quot.1	Salid		X		$\frac{1}{2}$	Z					
15 SMM-5-8-L	1/11/1	1800	Solid		X		トメ	8 1					
13 SMN-51-5-0	1/20017	1500	20/1g	-	X		7	X V		-			
14 SMM-51-6-U	1/126/17	1600	5012	-	X		X	X					
15 SWM-51-7-U	1/20/17	aut-1	52/12	-	X		14	X 7					
10-2-2-3-N	1/2/1	1800	Salid	-	X		\mathbf{X}	R					1
													Pa
Kelingup neo py: (290 and 10)				Kece	red by: (S	ערשווופוי געלע געע	milation)	#778	293037-	72)	1/27/2017	N:00AM	ige 2
Relinhuished by! (Signatuke)	/			Rece	ived by: (S	ignature/A	ffiliation)	, ,		CEN.	Date: 1/3-8/17	Time: /3 3 O	6 of 3
Relinquished by: (Signature)				Rece	ived by: (S	ignature/A	ffilitation)				Date:	Time:	0
													٦

. .

782

1 x

06/02/14 Revision

.

•

Return to Contents

🔅 eurofins		WORK ORDER	R NUMBER:	Page 17–01	28 of 3	0 <u>544</u>
Calscienc	SAMPLE RECEIPT	CHECKLIST	C	OOLER	<u> </u>	0F_0_
CLIENT: Terrapha	se Engig.		DAT	E: 01	1 <u>30</u>	/ 2017
TEMPERATURE: (Criteria: 0.0°C Thermometer ID: SC3B (CF: 0.0° Sample(s) outside temperat Sample(s) outside temperat Sample(s) received at ambient Ambient Temperature:	– 6.0°C, not frozen except sedim C); Temperature (w/o CF): $\frac{24}{}$ ure criteria (PM/APM contacted b ure criteria but received on ice/ch temperature; placed on ice for tra Filter	hent/tissue) 5° °C (w/ CF): $\frac{2}{36}$ by: 8° hilled on same day c ansport by courier	9 <u>4-5</u> °C; ⊏ of sampling] Blank Ghecke	Z Sam ★ N ☉ , ed by:	ple 1 ce 8 36
CUSTODY SEAL: Cooler	ct □ Present but Not Intact ct □ Present but Not Intact	BOX Not Present Not Present	2 □ N/A □ N/A	Checke Checke	ed by: ed by:	<u>876</u> 876
SAMPLE CONDITION: Chain-of-Custody (COC) docume COC document(s) received comp	nt(s) received with samples lete g time □ Matrix □ Number of c	containers		Yes	No □ □	N/A □ □
□ No analysis requested □ N Sampler's name indicated on CO Sample container label(s) consist Sample container(s) intact and in Proper containers for analyses re Sufficient volume/mass for analys Samples received within holding t	Iot relinquished D No relinquish C ent with COC good condition quested es requested ime	ned date □ No relii	nquished time			
Aqueous samples for certain a □ pH □ Residual Chlorine I Proper preservation chemical(s) r Unpreserved aqueous sample	nalyses received within 15-minut Dissolved Sulfide Dissolved noted on COC and/or sample con (s) received for certain analyses	e holding time d Oxygen tainer				Þ Þ
Container(s) for certain analysis fi	ree of headspace	ved Oxygen (SM 45	500) ach)			A
Li Carbon Dioxide (SM 4500) Tedlar™ bag(s) free of condensa	Lion	iyarogen Sumae (H	aun) 			Ø
CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ V □ 125PBznna □ 250AGB □ 250 □ 500PB □ 1AGB □ 1AGBna ₂ Solid: □ 4ozCGJ □ 8ozCGJ □ Air: □ Tedlar™ □ Canister □ S	OAna₂ □ 100PJ □ 100PJna₂ I)CGB □ 250CGBs □ 250PB □ □ 1AGBs □ 1PB □ 1PBna □ 16ozCGJ □ Sleeve () □ E orbent Tube □ PUF □	(Trip Blar ☐ 125AGB □ 125A ☐ 250PBn □ 500AC I □ EnCores [®] () □ _ Other Matrix (nk Lot Numbe GBh □ 125A GB □ 500AGJ □ □] TerraCores®): □	GBp GBp	125PB AGJs 21 <u>1-5</u>)
Container: A = Amber, B = Bottle, C = Preservative: b = buffered, f = filtered s = H ₂ SO ₄ , u = ultra-pu	= ∪iear,	= Jar, \mathbf{P} = Plastic, and $\mathbf{a}_2 = Na_2S_2O_3$, $\mathbf{p} = H_3F$ = Zn (CH ₃ CO ₂) ₂ + Na	PO_4 , Labeled	d/Checke Reviewe	ay ed by: ed by:	826 679

seurofins			WORK ORDER	NUMBER: 1	Page 17-01	29 of 30	\$44
	Calscience	SAMPLE RECEIPT	CHECKLIST	c	OOLER	<u> </u>)F
CLIENT:	errapha	se Engig.		DAT	'E: 01 /	30	/ 2017
TEMPERATURE: (Thermometer ID: S Sample(s) ou Sample(s) ou Sample(s) receiv Ambient Temperatu	(Criteria: 0.0°C – 6.0 C3B (CF: 0.0°C); Te Itside temperature c Itside temperature c ved at ambient temp ure: □ Air □ Filter)°C, not frozen except sedime emperature (w/o CF): $\underline{\mathcal{Z} \mathcal{Y}}$ riteria (PM/APM contacted by riteria but received on ice/chi perature; placed on ice for tra	ent/tissue) <u>- </u>	2 <u> </u>] Blank	Ø Sam ≁ X o ed by:	ple 1CC 826
CUSTODY SEAL: Cooler	resent and Intact resent and Intact	 Present but Not Intact Present but Not Intact 	Boχ 2/2 D Not Present Not Present	□ N/A □ N/A	Checke Checke	:d by: :d by:	876 826
SAMPLE CONDIT Chain-of-Custody (COC document(s)	ION: (COC) document(s) received complete te	received with samples e □ Matrix □ Number of c	ontainers		Yes D	No □ □	N/A □ □
□ No analysis r Sampler's name in Sample container I Sample containers f Proper containers f Sufficient volume/r	equested D Not re dicated on COC label(s) consistent w s) intact and in good for analyses reques mass for analyses re	vith COC					
Aqueous sample Aqueous sample D pH D Resid Proper preservatio Unpreserved ac	les for certain analys Jual Chlorine □ Dis on chemical(s) noted queous sample(s) re	ses received within 15-minute solved Sulfide □ Dissolved on COC and/or sample conf eceived for certain analyses	e holding time I Oxygen tainer				d d
Container(s) for ce	anics □ Dissolved (ide (SM 4500) □ F	f headspace Gases (RSK-175) □ Dissol ¹ Ferrous Iron (SM 3500) □ H	ved Oxygen (SM 45 lydrogen Sulfide (Ha	00) ach)			×
Tedlar [™] bag(s) fre CONTAINER TYP Aqueous : □ VOA □ 125PBznna □ 2 □ 500PB □ 1AGE Solid : □ 4ozCGJ Air : □ Tedlar [™] □	e of condensation 'E: □ VOAh □ VOAn 250AGB □ 250CGE 3 □ 1AGBna₂ □ 1. □ 8ozCGJ □ 16oz] Canister □ Sorber	a₂ □ 100PJ □ 100PJna₂ □ 3 □ 250CGBs □ 250PB □ AGBs □ 1PB □ 1PBna □ :CGJ □ Sleeve () □ E nt Tube □ PUF □	(Trip Blan □ 125AGB □ 125AG □ 250PBn □ 500AG □ □ :nCores [®] () □ Other Matrix (k Lot Numbe GBh □ 125A B □ 500AG. □ I TerraCores [®]): □	□ GBp □ J □ 500, □ ()]	□ 125PB AGJs 	×) 5 N
Container: $A = AmbePreservative: b = bus = H_2$	er, \mathbf{B} = Bottle, \mathbf{C} = Clear uffered, \mathbf{f} = filtered, \mathbf{h} = $_2$ SO ₄ , \mathbf{u} = ultra-pure, \mathbf{x}	ar, E = Envelope, G = Glass, J = HCl, n = HNO ₃ , na = NaOH, na = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna	= Jar, P = Plastic, and a ₂ = Na ₂ S ₂ O ₃ , p = H ₃ P ⁴ = Zn (CH ₃ CO ₂) ₂ + Na ⁶	Z = Ziploc/Res O ₄ , Labele OH	sealable B d/Check Review	ag ed by: _ ed by: _	826

8

Work Order Number	Request	Original sample ID	Corrected sample ID
		SMM-5H-1-U	SMM-4H-1-U
		SMM-5-1-H	SMM-4-1-H
		SMM-5H-2-U	SMM-4H-2-U
		SMM-5-2-H	SMM-4-2-H
		SMM-5H-3-U	SMM-4H-3-U
		SMM-5-3-H	SMM-4-3-H
		SMM-5H-4-U	SMM-4H-4-U
17-01-2301	Change prefix from "SMM-5 to	SMM-5-4-H	SMM-4-4-H
	SMM-4"	SMM-5H-5-U	SMM-4H-5-U
		SMM-5-5-H	SMM-4-5-H
		SMM-5H-6-U	SMM-4H-6-U
		SMM-5-6-H	SMM-4-6-H
		SMM-5H-7-U	SMM-4H-7-U
		SMM-5-7-H	SMM-4-7-H
		SMM-5H-8-U	SMM-4H-8-U
		SMM-5-8-H	SMM-4-8-H
		SMM-2M-1-U	SMM-1M-1-U
		SMM-2-1-M	SMM-1-1-M
17-01-2401 Change		SMM-2M-2-U	SMM-1M-2-U
		SMM-2-2-M	SMM-1-2-M
		SMM-2M-3-U	SMM-1M-3-U
		SMM-2-3-M	SMM-1-3-M
		SMM-2M-4-U	SMM-1M-4-U
	Change prefix from "SMM-2 to	SMM-2-4-M	SMM-1-4-M
	SMM-1"	SMM-2M-5-U	SMM-1M-5-U
		SMM-2-5-M	SMM-1-5-M
		SMM-2M-6-U	SMM-1M-6-U
		SMM-2-6-M	SMM-1-6-M
		SMM-2M-7-U	SMM-1M-7-U
		SMM-2-7-M	SMM-1-7-M
		SMM-2M-8-U	SMM-1M-8-U
		SMM-2-8-M	SMM-1-8-M
		SMM-5L-1-U	SMM-4L-1-U
		SMM-5-1-L	SMM-4-1-L
		SMM-5L-2-U	SMM-4L-2-U
		SMM-5-2-L	SMM-4-2-L
		SMM-5L-3-U	SMM-4L-3-U
		SMM-5-3-L	SMM-4-3-L
		SMM-5L-4-U	SMM-4L-4-U
17-01-2544	Change prefix from "SMM-5 to	SMM-5-4-L	SMM-4-4-L
17 01 2511	SMM-4"	SMM-5L-5-U	SMM-4L-5-U
		SMM-5-5-L	SMM-4-5-L
		SMM-5L-6-U	SMM-4L-6-U
		SMM-5-6-L	SMM-4-6-L
		SMM-5L-7-U	SMM-4L-7-U
		SMM-5-7-L	SMM-4-7-L
		SMM-5L-8-U	SMM-4L-8-U
		SMM-5-8-L	SMM-4-8-L

WORK ORDER NUMBER: 17-02-0637

Calscience

The difference is service

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Terraphase Engineering, Inc. Client Project Name: ISRI MSR Treatability Study / 0102.001.004 Attention: Emily Mosen 1404 Franklin Street

Suite 600 Oakland, CA 94612-3215

Approved for release on 02/21/2017 by: Don Burley Project Manager

ResultLink)

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🛟 eurofins

Calscience

Contents

Client Proje Work Orde	ect Name: r Number:	ISRI MSR Treatability Study / 0102.001.004 17-02-0637	
1	Work Ord	ler Narrative	3
2	Sample S	Summary	4
3	Client Sat 3.1 ASTI 3.2 EPA 3.3 EPA	mple Data	5 5 8 12
4	Quality C 4.1 MS/N 4.2 PDS/ 4.3 Samj 4.4 LCS/	ontrol Sample Data. /SD. /PDSD. ole Duplicate. LCSD.	17 17 19 20 21
5	Sample A	nalysis Summary	23
6	Glossary	of Terms and Qualifiers	24
7	Chain-of-	Custody/Sample Receipt Form	25

Work Order: 17-02-0637

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 02/08/17. They were assigned to Work Order 17-02-0637.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Return to Contents

Complet	deutification Leb Number	Collection Date and	Time Number of Metrix
Attn:	Emily Mosen		
		Number of Containers:	16
		Date/Time Received:	02/08/17 10:10
	Oakland, CA 94612-3215	PO Number:	
	1404 Franklin Street, Suite 600	Project Name:	ISRI MSR Treatability Study / 0102.001.004
Client:	Terraphase Engineering, Inc.	Work Order:	17-02-0637

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SSP-4L-1-U	17-02-0637-1	02/06/17 11:00	1	Solid
SSP-4L-2-U	17-02-0637-2	02/06/17 12:15	1	Solid
SSP-4L-3-U	17-02-0637-3	02/06/17 13:15	1	Solid
SSP-4L-4-U	17-02-0637-4	02/06/17 14:15	1	Solid
SSP-4-1-L	17-02-0637-5	02/06/17 11:00	1	Solid
SSP-4-2-L	17-02-0637-6	02/06/17 12:15	1	Solid
SSP-4-3-L	17-02-0637-7	02/06/17 13:15	1	Solid
SSP-4-4-L	17-02-0637-8	02/06/17 14:15	1	Solid
SSP-4L-5-U	17-02-0637-9	02/06/17 15:15	1	Solid
SSP-4L-6-U	17-02-0637-10	02/06/17 16:15	1	Solid
SSP-4L-7-U	17-02-0637-11	02/06/17 17:15	1	Solid
SSP-4L-8-U	17-02-0637-12	02/06/17 18:15	1	Solid
SSP-4-5-L	17-02-0637-13	02/06/17 15:15	1	Solid
SSP-4-6-L	17-02-0637-14	02/06/17 16:15	1	Solid
SSP-4-7-L	17-02-0637-15	02/06/17 17:15	1	Solid
SSP-4-8-L	17-02-0637-16	02/06/17 18:15	1	Solid

Terraphase Engineering, Inc.			Date Re	eceived:			02/08/17
1404 Franklin Street, Suite 600			Work O	rder:			17-02-0637
Oakland, CA 94612-3215			Prepara	tion:			N/A
			Method:	:		AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Stud	dy / 0102.001.004	ŀ				Pa	age 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4L-1-U	17-02-0637-1-A	02/06/17 11:00	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		Result		RL	DF	Qua	alifiers
Moisture		38		0.10	1.00		
SSP-4L-2-U	17-02-0637-2-A	02/06/17 12:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		36		0.10	1.00		
SSP-4L-3-U	17-02-0637-3-A	02/06/17 13:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		Result		RL	DF	Qua	alifiers
Moisture		38		0.10	1.00		
SSP-4L-4-U	17-02-0637-4-A	02/06/17 14:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		Result		RL	DF	Qua	alifiers
Moisture		36		0.10	1.00		
SSP-4-1-L	17-02-0637-5-A	02/06/17 11:00	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		64		0.10	1.00		
SSP-4-2-L	17-02-0637-6-A	02/06/17 12:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		57		0.10	1.00		
SSP-4-3-L	17-02-0637-7-A	02/06/17 13:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		44		0.10	1.00		
SSP-4-4-L	17-02-0637-8-A	02/06/17 14:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		43		0.10	1.00		

Terraphase Engineering, Inc.			Date Re	ceived:			02/08/17
1404 Franklin Street, Suite 600			Work O	rder:			17-02-0637
Oakland, CA 94612-3215			Prepara	tion:			N/A
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Stud	dy / 0102.001.004	Ļ				Pa	ge 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4L-5-U	17-02-0637-9-A	02/06/17 15:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		RL	DF	<u>Qu</u> a	alifiers
Moisture		30		0.10	1.00		
SSP-4L-6-U	17-02-0637-10-A	02/06/17 16:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		Result		RL	DF	Qua	alifiers
Moisture		30		0.10	1.00		
SSP-4L-7-U	17-02-0637-11-A	02/06/17 17:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		Result		RL	DF	Qua	alifiers
Moisture		38		0.10	1.00		
SSP-4L-8-U	17-02-0637-12-A	02/06/17 18:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		36		0.10	1.00		
SSP-4-5-L	17-02-0637-13-A	02/06/17 15:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		30		0.10	1.00		
SSP-4-6-L	17-02-0637-14-A	02/06/17 16:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Moisture		46		0.10	1.00		
SSP-4-7-L	17-02-0637-15-A	02/06/17 17:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		49		0.10	1.00		
SSP-4-8-L	17-02-0637-16-A	02/06/17 18:15	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Moisture		56		0.10	1.00		

Moisture

Terraphase Engineering, Inc.			Date Rece	eived:			02/08/17
1404 Franklin Street, Suite 600			Work Orde	er:			17-02-0637
Oakland, CA 94612-3215			Preparatio	n:			N/A
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Stud	y / 0102.001.004					Pa	ge 3 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-05-014-6692	N/A	Solid	N/A	02/13/17	02/13/17 19:00	H0213MOIB1
Parameter		Result	<u>R</u>	<u>L</u>	DF	Qua	lifiers

0.10

1.00

ND

Return to Contents

Terraphase	Engineering, Inc.			Date Re	eceived:			02/08/17
1404 Frankl	in Street, Suite 600			Work O	rder:			17-02-0637
Oakland, CA	A 94612-3215			Prepara	ition:			EPA 3050B
,.				Method:	:			EPA 6010B
				Units:				ma/ka
Project ⁻ ISR	I MSR Treatability Stud	dv / 0102 001 004	4	ernte.			Pa	ide 1 of 4
			•					.90 1 01 1
Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4L-1-U		17-02-0637-1-A	02/06/17 11:00	Solid	ICP 7300	02/10/17	02/13/17 12:19	170210L02
Comment(s):	- The reporting limit is eleve	vated resulting from r	matrix interferer	nce.				
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	alifiers
Cadmium			7.68		4.78	9.57		
Lead			455		4.78	9.57		
Zinc			7290		9.57	9.57		
SSP-4L-2-U		17-02-0637-2-A	02/06/17 12:15	Solid	ICP 7300	02/10/17	02/13/17 12:22	170210L02
Comment(s):	- The reporting limit is elev	vated resulting from r	matrix interferer	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			8.93		4.83	9.66		
Lead			632		4.83	9.66		
Zinc			8660		9.66	9.66		
SSP-4L-3-U		17-02-0637-3-A	02/06/17 13:15	Solid	ICP 7300	02/10/17	02/13/17 12:23	170210L02
Comment(s):	- The reporting limit is elev	vated resulting from r	natrix interferer	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			15.5		4.85	9.71		
Lead			949		4.85	9.71		
Zinc			9010		9.71	9.71		
SSP-4L-4-U		17-02-0637-4-A	02/06/17 14:15	Solid	ICP 7300	02/10/17	02/13/17 12:24	170210L02
Comment(s):	- The reporting limit is elev	vated resulting from r	matrix interferer	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			9.90		4.81	9.62		
Lead			562		4.81	9.62		
Zinc			7690		9.62	9.62		
SSP-4-1-L		17-02-0637-5-A	02/06/17 11:00	Solid	ICP 7300	02/10/17	02/13/17 12:25	170210L02
Comment(s):	- The reporting limit is elev	vated resulting from r	matrix interferer	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DE	Qua	alifiers
Cadmium			ND		4.88	9.76		
Lead			404		4.88	9.76		
Zinc			4580		9.76	9.76		

Analytical Report

i citapitase i	Engineering, Inc.			Date Rec	eived:			02/08/17
1404 Frankli	n Street, Suite 600			Work Ord	ler:			17-02-0637
Oakland, CA	94612-3215			Preparati	on:			EPA 3050B
				Method:				EPA 6010B
				Units:				mg/kg
Project: ISRI	MSR Treatability Study	y / 0102.001.004	ļ				Pa	ige 2 of 4
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-2-L		17-02-0637-6-A	02/06/17 12:15	Solid	ICP 7300	02/10/17	02/13/17 12:25	170210L02
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.				
Parameter			<u>Result</u>		RL	DF	Qua	alifiers
Cadmium			5.67		4.81	9.62		
Lead			384		4.81	9.62		
Zinc			6080		9.62	9.62		
SSP-4-3-L		17-02-0637-7-A	02/06/17 13:15	Solid	ICP 7300	02/10/17	02/13/17 12:26	170210L02
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.				
Parameter			<u>Result</u>		RL	DF	Qua	alifiers
Cadmium			8.17		4.90	9.80		
Lead			498		4.90	9.80		
Zinc			6640		9.80	9.80		
SSP-4-4-L		17-02-0637-8-A	02/06/17	Solid	ICP 7300	02/10/17	02/13/17	1702101 02
			14:15				12:27	
Comment(s):	- The reporting limit is eleva	ated resulting from m	14:15 natrix interferen	nce.			12:27	
Comment(s): Parameter	- The reporting limit is eleva	ated resulting from m	14:15 natrix interferen <u>Result</u>	nce.	RL	DE	12:27 Qua	alifiers
Comment(s): Parameter Cadmium	- The reporting limit is eleva	ated resulting from m	14:15 natrix interferen <u>Result</u> 6.75	nce.	<u>RL</u> 4.81	<u>DF</u> 9.62	12:27 Qua	alifiers
Comment(s): <u>Parameter</u> Cadmium Lead	- The reporting limit is eleva	ated resulting from m	14:15 natrix interferen <u>Result</u> 6.75 1570	nce.	<u>RL</u> 4.81 4.81	<u>DF</u> 9.62 9.62	12:27 Qua	alifiers
Comment(s): <u>Parameter</u> Cadmium Lead Zinc	- The reporting limit is eleva	ated resulting from m	14:15 natrix interferen <u>Result</u> 6.75 1570 7500	nce.	<u>RL</u> 4.81 9.62	DF 9.62 9.62 9.62	<u>12:27</u>	alifiers
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U	- The reporting limit is eleva	ated resulting from m	14:15 hatrix interferen Result 6.75 1570 7500 02/06/17 15:15	Solid	<u>RL</u> 4.81 4.81 9.62 ICP 7300	DF 9.62 9.62 9.62 9.62 02/10/17	12:27 Qua 02/13/17 12:28	alifiers 170210L02
Comment(s): <u>Parameter</u> Cadmium Lead Zinc SSP-4L-5-U Comment(s):	- The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15	Solid	RL 4.81 4.81 9.62 ICP 7300	DF 9.62 9.62 9.62 02/10/17	12:27 Qua 02/13/17 12:28	alifiers 170210L02
Comment(s): <u>Parameter</u> Cadmium Lead Zinc SSP-4L-5-U Comment(s): <u>Parameter</u>	- The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m	14:15 hatrix interferen Result 6.75 1570 7500 02/06/17 15:15 hatrix interferen Result	Solid	RL 4.81 4.81 9.62 ICP 7300 RL	DF 9.62 9.62 9.62 02/10/17 DF	12:27 Qua 02/13/17 12:28 Qua	alifiers 170210L02
Comment(s): <u>Parameter</u> Cadmium Lead Zinc SSP-4L-5-U Comment(s): <u>Parameter</u> Cadmium	- The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15 natrix interferen Result 13.4	Solid	<u>RL</u> 4.81 4.81 9.62 ICP 7300 <u>RL</u> 4.85	DF 9.62 9.62 9.62 02/10/17 DF 9.71	12:27 Qua 02/13/17 12:28 Qua	alifiers 170210L02
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U Comment(s): Parameter Cadmium Lead	- The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15 natrix interferen Result 13.4 965	Solid	<u>RL</u> 4.81 4.81 9.62 ICP 7300 <u>RL</u> 4.85 4.85	DF 9.62 9.62 9.62 02/10/17 DF 9.71 9.71	12:27 Qua 02/13/17 12:28 Qua	alifiers 170210L02 alifiers
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U Comment(s): Parameter Cadmium Lead Zinc	- The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15 natrix interferen Result 13.4 965 11300	Solid Solid	<u>RL</u> 4.81 4.81 9.62 ICP 7300 <u>RL</u> 4.85 4.85 9.71	DF 9.62 9.62 9.62 02/10/17 DF 9.71 9.71 9.71	12:27 Qua 02/13/17 12:28 Qua	alifiers 170210L02 alifiers
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U Comment(s): Parameter Cadmium Lead Zinc SSP-4L-6-U	- The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m 17-02-0637-10-A	14:15 hatrix interferen <u>Result</u> 6.75 1570 7500 02/06/17 15:15 hatrix interferen <u>Result</u> 13.4 965 11300 02/06/17 16:15	Solid Solid Solid	RL 4.81 4.81 9.62 ICP 7300 RL 4.85 9.71 ICP 7300	DF 9.62 9.62 9.62 02/10/17 DF 9.71 9.71 9.71 9.71 9.71	12:27 Qua 02/13/17 12:28 Qua 02/13/17 12:29	alifiers alifiers alifiers
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U Comment(s): Parameter Cadmium Lead Zinc SSP-4L-6-U Comment(s):	The reporting limit is elevative of the report of t	ated resulting from m 17-02-0637-9-A ated resulting from m 17-02-0637-10-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15 natrix interferen Result 13.4 965 11300 02/06/17 16:15 natrix interferen	Solid Solid Ce.	RL 4.81 4.81 9.62 ICP 7300 RL 4.85 4.85 9.71 ICP 7300	DF 9.62 9.62 9.62 02/10/17 DF 9.71 9.71 9.71 9.71 9.71	12:27 Qua 02/13/17 12:28 Qua 02/13/17 12:29	alifiers 170210L02 alifiers 170210L02 170210L02
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U Comment(s): Parameter Cadmium Lead Zinc SSP-4L-6-U Comment(s): Parameter	The reporting limit is elevative of the report of the r	ated resulting from m 17-02-0637-9-A ated resulting from m 17-02-0637-10-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15 natrix interferen Result 13.4 965 11300 02/06/17 16:15 natrix interferen Result	Solid Solid Solid	RL 4.81 4.81 9.62 ICP 7300 RL 4.85 4.85 9.71 ICP 7300 RL	DF 9.62 9.62 9.62 02/10/17 DF 9.71 9.71 9.71 9.71 9.71	12:27 Qua 02/13/17 12:28 Qua 02/13/17 12:29	alifiers 170210L02 170210L02 170210L02 alifiers
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U Comment(s): Parameter Cadmium Lead Zinc SSP-4L-6-U Comment(s): Parameter Cadmium	The reporting limit is eleva The reporting limit is eleva The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m 17-02-0637-10-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15 natrix interferen Result 13.4 965 11300 02/06/17 16:15 natrix interferen Result 7.99	Solid Solid Ince. Solid Ince.	RL 4.81 4.81 9.62 ICP 7300 RL 4.85 9.71 ICP 7300 RL 4.90	DF 9.62 9.62 9.62 02/10/17 DF 9.71 9.71 9.71 9.71 9.71 9.71 9.71	12:27 Qua 02/13/17 12:28 Qua 02/13/17 12:29	alifiers 170210L02 170210L02 170210L02 alifiers
Comment(s): Parameter Cadmium Lead Zinc SSP-4L-5-U Comment(s): Parameter Cadmium Lead Zinc SSP-4L-6-U Comment(s): Parameter Cadmium Lead	The reporting limit is eleva	ated resulting from m 17-02-0637-9-A ated resulting from m 17-02-0637-10-A ated resulting from m	14:15 natrix interferen Result 6.75 1570 7500 02/06/17 15:15 natrix interferent Result 13.4 965 11300 02/06/17 16:15 natrix interferent Result 7.99 593	Solid nce. Solid nce.	RL 4.81 4.81 9.62 ICP 7300 RL 4.85 4.85 9.71 ICP 7300 RL 4.90 4.90	DF 9.62 9.62 9.62 02/10/17 DF 9.71 9.71 9.71 9.71 9.71 9.71 9.71 9.71	12:27 Qua 02/13/17 12:28 Qua 02/13/17 12:29 Qua	alifiers 170210L02 alifiers 170210L02 alifiers

Analytical Report

Terraphase Engineering, Inc.				Date Received: 02/08/1					
1404 Franklin Street, Suite 600				Work Order: 17-02-0					
Oakland, CA 94612-3215				Preparation: EPA :					
				Method:				EPA 6010B	
				Units:				mg/kg	
Project: ISRI	I MSR Treatability Stud	y / 0102.001.004	Ļ				Pa	ige 3 of 4	
Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SSP-4L-7-U		17-02-0637-11-A	02/06/17 17:15	Solid	ICP 7300	02/10/17	02/13/17 12:30	170210L02	
Comment(s):	- The reporting limit is elev	ated resulting from m	natrix interferer	nce.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qualifiers		
Cadmium			17.6		4.83	9.66			
Lead			660		4.83	9.66			
Zinc			7900		9.66	9.66			
SSP-4L-8-U		17-02-0637-12-A	02/06/17 18:15	Solid	ICP 7300	02/10/17	02/13/17 12:33	170210L02	
Comment(s):	- The reporting limit is elev	ated resulting from m	natrix interferer	nce.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers	
Cadmium			13.1		4.78	9.57			
Lead			624		4.78	9.57			
Zinc			8720		9.57	9.57			
SSP-4-5-L		17-02-0637-13-A	02/06/17 15:15	Solid	ICP 7300	02/10/17	02/13/17 12:34	170210L02	
Comment(s):	- The reporting limit is elev	ated resulting from m	natrix interferer	nce.					
Parameter			Result		RL	DF	Qua	alifiers	
Cadmium			12.3		4.93	9.85	<u></u>		
Cadmium Lead			12.3 555		4.93 4.93	9.85 9.85			
Cadmium Lead Zinc			12.3 555 10500		4.93 4.93 9.85	9.85 9.85 9.85	<u></u>		
Cadmium Lead Zinc SSP-4-6-L		17-02-0637-14-A	12.3 555 10500 02/06/17 16:15	Solid	4.93 4.93 9.85	9.85 9.85 9.85 02/10/17	02/13/17 12:34	170210L02	
Cadmium Lead Zinc SSP-4-6-L Comment(s):	- The reporting limit is elev	17-02-0637-14-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen	Solid	4.93 4.93 9.85 ICP 7300	9.85 9.85 9.85 02/10/17	02/13/17 12:34	170210L02	
Cadmium Lead Zinc SSP-4-6-L Comment(s): <u>Parameter</u>	- The reporting limit is elev	17-02-0637-14-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u>	Solid	4.93 4.93 9.85 ICP 7300 <u>RL</u>	9.85 9.85 9.85 02/10/17	02/13/17 12:34 <u>Qua</u>	170210L02	
Cadmium Lead Zinc SSP-4-6-L Comment(s): <u>Parameter</u> Cadmium	- The reporting limit is elev	17-02-0637-14-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4	Solid	4.93 4.93 9.85 ICP 7300 <u>RL</u> 4.85	9.85 9.85 9.85 02/10/17 <u>DF</u> 9.71	02/13/17 12:34 Qua	170210L02	
Cadmium Lead Zinc SSP-4-6-L Comment(s): <u>Parameter</u> Cadmium Lead	- The reporting limit is elev	17-02-0637-14-A rated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4 426	Solid nce.	4.93 4.93 9.85 ICP 7300 RL 4.85 4.85	9.85 9.85 9.85 02/10/17 <u>DF</u> 9.71 9.71	02/13/17 12:34 Qua	170210L02 alifiers	
Cadmium Lead Zinc SSP-4-6-L Comment(s): Parameter Cadmium Lead Zinc	- The reporting limit is elev	17-02-0637-14-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4 426 6890	Solid	4.93 4.93 9.85 ICP 7300 <u>RL</u> 4.85 4.85 9.71	9.85 9.85 9.85 02/10/17 <u>DF</u> 9.71 9.71 9.71	02/13/17 12:34 Qua	170210L02 alifiers	
Cadmium Lead Zinc SSP-4-6-L Comment(s): Parameter Cadmium Lead Zinc SSP-4-7-L	- The reporting limit is elev	17-02-0637-14-A ated resulting from m 17-02-0637-15-A	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4 426 6890 02/06/17 17:15	Solid nce. Solid	4.93 4.93 9.85 ICP 7300 RL 4.85 4.85 9.71 ICP 7300	9.85 9.85 9.85 02/10/17 <u>DF</u> 9.71 9.71 9.71 9.71 9.71	02/13/17 12:34 Qua 02/13/17 12:35	170210L02 alifiers 170210L02	
Cadmium Lead Zinc SSP-4-6-L Comment(s): Parameter Cadmium Lead Zinc SSP-4-7-L Comment(s):	- The reporting limit is elev	17-02-0637-14-A ated resulting from m 17-02-0637-15-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4 426 6890 02/06/17 17:15 natrix interferen	Solid nce. Solid	4.93 4.93 9.85 ICP 7300 RL 4.85 4.85 9.71 ICP 7300	9.85 9.85 9.85 02/10/17 DF 9.71 9.71 9.71 9.71 9.71	02/13/17 12:34 Qua 02/13/17 12:35	170210L02 alifiers 170210L02	
Cadmium Lead Zinc SSP-4-6-L Comment(s): <u>Parameter</u> Cadmium Lead Zinc SSP-4-7-L Comment(s): <u>Parameter</u>	- The reporting limit is elev	17-02-0637-14-A ated resulting from m 17-02-0637-15-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4 426 6890 02/06/17 17:15 natrix interferen <u>Result</u>	Solid nce. Solid	4.93 4.93 9.85 ICP 7300 RL 4.85 4.85 9.71 ICP 7300 RL	9.85 9.85 9.85 02/10/17 DF 9.71 9.71 9.71 9.71 02/10/17 DE	02/13/17 12:34 Qua 02/13/17 12:35	170210L02 alifiers 170210L02 alifiers	
Cadmium Lead Zinc SSP-4-6-L Comment(s): Parameter Cadmium Lead Zinc SSP-4-7-L Comment(s): Parameter Cadmium	- The reporting limit is elev	17-02-0637-14-A ated resulting from m 17-02-0637-15-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4 426 6890 02/06/17 17:15 natrix interferen <u>Result</u> 7.94	Solid nce. Solid nce.	4.93 4.93 9.85 ICP 7300 RL 4.85 4.85 9.71 ICP 7300 RL 4.88	9.85 9.85 9.85 02/10/17 <u>DF</u> 9.71 9.71 9.71 9.71 9.71 <u>02/10/17</u> <u>DF</u> 9.76	02/13/17 12:34 Qua 02/13/17 12:35	170210L02 Alifiers 170210L02 Alifiers	
Cadmium Lead Zinc SSP-4-6-L Comment(s): Parameter Cadmium Lead Zinc SSP-4-7-L Comment(s): Parameter Cadmium Lead	- The reporting limit is elev	17-02-0637-14-A ated resulting from m 17-02-0637-15-A ated resulting from m	12.3 555 10500 02/06/17 16:15 natrix interferen <u>Result</u> 10.4 426 6890 02/06/17 17:15 natrix interferen <u>Result</u> 7.94 519	Solid nce. Solid nce.	4.93 4.93 9.85 ICP 7300 RL 4.85 4.85 9.71 ICP 7300 RL 4.88 4.88 4.88	9.85 9.85 9.85 02/10/17 <u>DF</u> 9.71 9.71 9.71 02/10/17 <u>DF</u> 9.76 9.76 9.76	02/13/17 12:34 Qua 02/13/17 12:35	170210L02 alifiers 170210L02 alifiers	

Return to Contents

Terraphase Engineering, Inc.				ceived:	02/08/17			
1404 Franklin Street, Suite 600				der:	17-02-0637			
Oakland, CA 94612-3215				on:	EPA 3050B			
					EPA 6010B			
Units:					mg/kg			
Project: ISRI MSR Treatability Study / 0102.001.004 Page 4 of 4								
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SSP-4-8-L	17-02-0637-16-A	02/06/17 18:15	Solid	ICP 7300	02/10/17	02/13/17 12:36	170210L02	
Comment(s): - The reporting limit is elevated resulting from matrix interference.								
Parameter		Result		<u>RL</u>	<u>DF</u>	<u>Quali</u>	<u>fiers</u>	
Cadmium		14.1		4.81	9.62			
Lead		1090		4.81	9.62			
Zinc		11300		9.62	9.62			

Method Blank	097-01-002-24330	N/A	Solid	ICP 7300	02/10/17	02/13/17 12:01	170210L02
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	lifiers
Cadmium		ND		0.478	0.957		
Lead		ND		0.478	0.957		
Zinc		ND		0.957	0.957		

Terraphase Engineering, Inc.			Date Re	ceived:			02/08/17
1404 Franklin Street, Suite 600			Work Or	rder:			17-02-0637
Oakland, CA 94612-3215			Prepara	tion:			T22.11.5. All
			Method:				EPA 6010B
			Units:				mg/L
Project: ISRI MSR Treatability Study	/ 0102.001.004					Pa	ge 1 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4L-1-U	17-02-0637-1-A	02/06/17 11:00	Solid	ICP 7300	02/08/17	02/13/17 11:35	170210LA6
Comment(s): - The analysis was performe	ed on a STLC extrac	t of the sample	ә.				
Parameter		Result		<u>RL</u>	DF	<u>Qua</u>	<u>lifiers</u>
Cadmium		0.196		0.100	1.00		
Lead		34.1		0.100	1.00		
SSP-4L-1-U	17-02-0637-1-A	02/06/17 11:00	Solid	ICP 7300	02/08/17	02/13/17 15:47	170210LA6
Parameter		Result		<u>RL</u>	DF	Qua	lifiers
Zinc		663		1.00	10.0		
SSP-4L-2-U	17-02-0637-2-A	02/06/17 12:15	Solid	ICP 7300	02/08/17	02/13/17 11:36	170210LA6
Comment(s): - The analysis was performe	d on a STLC extrac	t of the sample	e.				
Parameter		Result		<u>RL</u>	DF	<u>Qua</u>	lifiers
Cadmium		0.259		0.100	1.00		
Lead		33.0		0.100	1.00		
Zinc		473		0.100	1.00		
SSP-4L-3-U	17-02-0637-3-A	02/06/17 13:15	Solid	ICP 7300	02/08/17	02/13/17 11:37	170210LA6
Comment(s): - The analysis was performe	ed on a STLC extrac	t of the sample	e.				
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	lifiers
Cadmium		ND		0.100	1.00		
Lead		24.9		0.100	1.00		
SSP-4L-3-U	17-02-0637-3-A	02/06/17 13:15	Solid	ICP 7300	02/08/17	02/13/17 15:48	170210LA6
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	<u>lifiers</u>
Zinc		670		1.00	10.0		
SSP-4L-4-U	17-02-0637-4-A	02/06/17 14:15	Solid	ICP 7300	02/08/17	02/13/17 11:38	170210LA6
Comment(s): - The analysis was performe	ed on a STLC extrac	t of the sample	e				
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	<u>lifiers</u>
Cadmium		0.129		0.100	1.00		
Lead		26.4		0.100	1.00		

Terraphase E	ngineering, Inc.			Date Re	ceived:			02/08/17
1404 Franklin	Street, Suite 600			Work Or	der:			17-02-0637
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All
				Method:				EPA 6010B
				Units:				mg/L
Project: ISRI I	MSR Treatability Study	y / 0102.001.004					Pa	ge 2 of 5
Client Sample Nu	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4L-4-U		17-02-0637-4-A	02/06/17 14:15	Solid	ICP 7300	02/08/17	02/13/17 15:49	170210LA6
Parameter			Result		RL	DE	Qua	lifiers
Zinc			511		1.00	10.0		
SSP-4-1-L		17-02-0637-5-A	02/06/17 11:00	Solid	ICP 7300	02/08/17	02/13/17 11:39	170210LA6
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sampl	le.	·		·	·
Parameter			<u>Result</u>		<u>RL</u>	DE	Qua	<u>llifiers</u>
Cadmium			0.185		0.100	1.00		
Lead			13.7		0.100	1.00		
Zinc			254		0.100	1.00		
SSP-4-2-L		17-02-0637-6-A	02/06/17 12:15	Solid	ICP 7300	02/08/17	02/13/17 11:40	170210LA6
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sampl	le.				
Parameter			<u>Result</u>		<u>RL</u>	DE	Qua	<u>llifiers</u>
Cadmium			0.263		0.100	1.00		
Lead			3.20		0.100	1.00		
Zinc			283		0.100	1.00		
SSP-4-3-L		17-02-0637-7-A	02/06/17 13:15	Solid	ICP 7300	02/08/17	02/13/17 11:41	170210LA6
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sampl	le.				
Parameter			Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Cadmium			ND		0.100	1.00		
Lead			1.40		0.100	1.00		
SSP-4-3-L		17-02-0637-7-A	02/06/17 13:15	Solid	ICP 7300	02/08/17	02/13/17 15:52	170210LA6
Parameter			Result		RL	DF	Qua	lifiers
Zinc			1330		1.00	10.0		

Terraphase Engineering, Inc.			Date Re	ceived:			02/08/17
1404 Franklin Street, Suite 600			Work O	rder:			17-02-0637
Oakland, CA 94612-3215			Prepara	tion:			T22.11.5. All
			Method:				EPA 6010B
			Units:				mg/L
Project: ISRI MSR Treatability Stud	y / 0102.001.004	Ļ				Pa	ge 3 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-4-L	17-02-0637-8-A	02/06/17 14:15	Solid	ICP 7300	02/08/17	02/13/17 11:44	170210LA6
Comment(s): - The analysis was perform	ned on a STLC extra	ct of the sample	э.				
Parameter		Result		<u>RL</u>	DF	Qua	<u>lifiers</u>
Cadmium		0.247		0.100	1.00		
Lead		16.4		0.100	1.00		
Zinc		382		0.100	1.00		
SSP-4L-5-U	17-02-0637-9-A	02/06/17 15:15	Solid	ICP 7300	02/08/17	02/13/17 11:45	170210LA6
Comment(s): - The analysis was perform	ned on a STLC extra	ct of the sample	э.				
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium		ND		0.100	1.00		
Lead		38.9		0.100	1.00		
SSP-4L-5-U	17-02-0637-9-A	02/06/17 15:15	Solid	ICP 7300	02/08/17	02/13/17 15:53	170210LA6
SSP-4L-5-U Parameter	17-02-0637-9-A	02/06/17 15:15 <u>Result</u>	Solid	ICP 7300	02/08/17	02/13/17 15:53 Qua	170210LA6
SSP-4L-5-U Parameter Zinc	17-02-0637-9-A	02/06/17 15:15 <u>Result</u> 1070	Solid	ICP 7300 RL 1.00	02/08/17 DF 10.0	02/13/17 15:53 Qua	170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U	17-02-0637-9-A 17-02-0637-10-A	02/06/17 15:15 <u>Result</u> 1070 02/06/17 16:15	Solid Solid	ICP 7300 RL 1.00 ICP 7300	02/08/17 DF 10.0 02/08/17	02/13/17 15:53 Qua 02/13/17 11:46	170210LA6 lifiers 170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extra	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample	Solid Solid	ICP 7300 RL 1.00 ICP 7300	02/08/17 DF 10.0 02/08/17	02/13/17 15:53 Qua 02/13/17 11:46	170210LA6 lifiers 170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac	02/06/17 15:15 <u>Result</u> 1070 02/06/17 16:15 ct of the sample <u>Result</u>	Solid Solid	ICP 7300 RL 1.00 ICP 7300 RL	02/08/17 <u>DF</u> 10.0 02/08/17 <u>DF</u>	02/13/17 15:53 Qua 02/13/17 11:46 Qua	170210LA6 difiers 170210LA6 difiers
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205	Solid Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100	02/08/17 <u>DF</u> 10.0 02/08/17 <u>DF</u> 1.00	02/13/17 15:53 Qua 02/13/17 11:46 Qua	170210LA6 Nifiers 170210LA6 Nifiers
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extra	02/06/17 15:15 <u>Result</u> 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205 28.0	Solid Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100	02/08/17 <u>DF</u> 10.0 02/08/17 <u>DF</u> 1.00 1.00	02/13/17 15:53 Qua 02/13/17 11:46 Qua	170210LA6 Nifiers 170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extra	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205 28.0 417	Solid Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100 0.100 0.100	02/08/17 <u>DF</u> 10.0 02/08/17 <u>DF</u> 1.00 1.00 1.00	02/13/17 15:53 Qua 02/13/17 11:46 Qua	170210LA6 difiers 170210LA6 difiers
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc SSP-4L-7-U	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac 17-02-0637-11-A	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205 28.0 417 02/06/17 17:15	Solid Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100 0.100 ICP 7300 ICP 7300	02/08/17 DF 10.0 02/08/17 DF 1.00 1.00 1.00 02/08/17	02/13/17 15:53 Qua 02/13/17 11:46 Qua 02/13/17 11:47	170210LA6 difiers 170210LA6 difiers
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc SSP-4L-7-U Comment(s): - The analysis was perform	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac 17-02-0637-11-A ned on a STLC extrac	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205 28.0 417 02/06/17 17:15 ct of the sample	Solid Solid e. Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100 0.100 ICP 7300 ICP 7300	02/08/17 DF 10.0 02/08/17 DF 1.00 1.00 1.00 02/08/17	02/13/17 15:53 Qua 02/13/17 11:46 Qua 02/13/17 11:47	170210LA6 difiers 170210LA6 difiers 170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc SSP-4L-7-U Comment(s): - The analysis was perform Parameter Comment(s): - The analysis was perform	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac 17-02-0637-11-A ned on a STLC extrac	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205 28.0 417 02/06/17 17:15 ct of the sample <u>Result</u>	Solid Solid e. Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100 0.100 ICP 7300 RL RL	02/08/17 <u>DF</u> 10.0 02/08/17 <u>DF</u> 1.00 1.00 1.00 02/08/17 <u>DF</u>	02/13/17 15:53 Qua 02/13/17 11:46 Qua 02/13/17 11:47	170210LA6 difiers 170210LA6 difiers 170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc SSP-4L-7-U Comment(s): - The analysis was perform Parameter Comment(s): - The analysis was perform Parameter - The analysis was perform Cadmium - The analysis was perform	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac 17-02-0637-11-A ned on a STLC extrac	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205 28.0 417 02/06/17 17:15 ct of the sample <u>Result</u> 0.289	Solid Solid e. Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100 ICP 7300 RL 0.100 ICP 7300 RL 0.100 ICP 7300 ICP 7300	02/08/17 DF 10.0 02/08/17 DF 1.00 1.00 1.00 02/08/17 DF 1.00	02/13/17 15:53 Qua 02/13/17 11:46 Qua 02/13/17 11:47	170210LA6 difiers 170210LA6 difiers 170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc SSP-4L-7-U Comment(s): - The analysis was perform Parameter Cadmium Lead Lead Lead Lead Lead	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac 17-02-0637-11-A ned on a STLC extrac	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample <u>Result</u> 0.205 28.0 417 02/06/17 17:15 ct of the sample <u>Result</u> 0.289 29.7	Solid Solid e. Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100 ICP 7300 RL 0.100 0.100 ICP 7300 RL 0.100 ICP 7300 RL 0.100 ICP 7300 RL 0.100 ICP 7300 RL 0.100 ICP 7300 RL 0.100 ICP 7300 RL 0.100 ICP 7300 ICP 750 ICP 750 ICP 750 ICP 750 ICP 750 ICP 750 ICP 750 ICP	02/08/17 <u>DF</u> 10.0 02/08/17 <u>DF</u> 1.00 1.00 02/08/17 <u>DF</u> 1.00 1.00 02/08/17	02/13/17 15:53 Qua 02/13/17 11:46 Qua 02/13/17 11:47	170210LA6 difiers 170210LA6 difiers 170210LA6
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc SSP-4L-7-U Comment(s): - The analysis was perform Parameter Cadmium Lead SSP-4L-7-U Comment(s): - The analysis was perform Parameter Cadmium Lead SSP-4L-7-U	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac 17-02-0637-11-A ned on a STLC extrac	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample Result 0.205 28.0 417 02/06/17 17:15 ct of the sample Result 0.289 29.7 02/06/17 17:15	Solid Solid e. Solid	ICP 7300 RL 1.00 ICP 7300 RL 0.100 0.100 ICP 7300 RL 0.100 ICP 7300 ICP 7300 ICP 7300 RL 0.100 ICP 7300 ICP 7300	02/08/17 DF 10.0 02/08/17 DF 1.00 1.00 02/08/17 DF 1.00 1.00 02/08/17	02/13/17 15:53 Qua 02/13/17 11:46 Qua 02/13/17 11:47 Qua 02/13/17 15:54	170210LA6 difiers 170210LA6 difiers 170210LA6 difiers
SSP-4L-5-U Parameter Zinc SSP-4L-6-U Comment(s): - The analysis was perform Parameter Cadmium Lead Zinc SSP-4L-7-U Comment(s): - The analysis was perform Parameter Cadmium Lead SSP-4L-7-U Comment(s): - The analysis was perform Parameter Cadmium Lead SSP-4L-7-U Parameter Parameter Parameter Parameter	17-02-0637-9-A 17-02-0637-10-A ned on a STLC extrac 17-02-0637-11-A ned on a STLC extrac 17-02-0637-11-A	02/06/17 15:15 Result 1070 02/06/17 16:15 ct of the sample Result 0.205 28.0 417 02/06/17 17:15 ct of the sample Result 0.289 29.7 02/06/17 17:15 Result	Solid Solid e. Solid e. Solid	ICP 7300 RL 1.00 ICP 7300 ICP 7300 RL 0.100 0.100 0.100 0.100 0.100 0.100 ICP 7300 RL 0.100 ICP 7300 RL 0.100 RL	02/08/17 DF 10.0 02/08/17 DF 1.00 1.00 1.00 02/08/17 DF 1.00 1.00 02/08/17 DF	02/13/17 15:53 Qua 02/13/17 11:46 Qua 02/13/17 11:47 Qua 02/13/17 15:54 Qua	170210LA6 difiers 170210LA6 difiers 170210LA6 difiers

Terraphase	Engineering, Inc.			Date Re	ceived:			02/08/17
1404 Frankli	in Street, Suite 600			Work O	rder:			17-02-0637
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All
•••••••••••••••••••••••••••••••••••••••				Method [.]				EPA 6010B
				Linite:				mg/l
Project: ISR	MSR Treatability Study /	0102 001 004		Offits.			Pa	ing/L
	Twork Treatability Otday /	0102.001.004					10	
Client Sample N	Number L	ab Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4L-8-U	1	7-02-0637-12-A	02/06/17 18:15	Solid	ICP 7300	02/08/17	02/13/17 11:48	170210LA6
Comment(s):	- The analysis was performed	I on a STLC extrac	t of the samp	ole.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			ND		0.100	1.00		
Lead			19.0		0.100	1.00		
Zinc			340		0.100	1.00		
SSP-4-5-L	1	7-02-0637-13-A	02/06/17 15:15	Solid	ICP 7300	02/08/17	02/13/17 11:49	170210LA6
Comment(s):	- The analysis was performed	I on a STLC extrac	t of the samp	le.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			ND		0.100	1.00		
Lead			0.460		0.100	1.00		
Zinc			16.3		0.100	1.00		
SSP-4-6-L	1	7-02-0637-14-A	02/06/17	Solid	ICP 7300	02/08/17	02/13/17	170210LA6
Comment(s):	- The analysis was performed	on a STI C extrac	t of the same	le.			11.50	
Parameter			Result		RI	DF	Qua	alifiers
Cadmium			0.218		0.100	1.00		<u></u>
Lead			6.98		0.100	1.00		
Zinc			234		0.100	1.00		
SSP-4-7-L	1	7-02-0637-15-A	02/06/17 17:15	Solid	ICP 7300	02/08/17	02/13/17 11:51	170210LA6
Comment(s):	- The analysis was performed	I on a STLC extrac	t of the samp	ole.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.227		0.100	1.00		
Lead			17.2		0.100	1.00		
Zinc			294		0.100	1.00		
SSP-4-8-L	1	7-02-0637-16-A	02/06/17 18:15	Solid	ICP 7300	02/08/17	02/13/17 11:52	170210LA6
Comment(s):	- The analysis was performed	I on a STLC extrac	t of the samp	ole.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			ND		0.100	1.00		
Lead			ND		0.100	1.00		
Zinc			2.24		0.100	1.00		

Analytical Report

Terraphase Engineering, Inc.			Date Rece	eived:			02/08/17		
1404 Franklin Street, Suite 600			Work Ord	er:		17-02-063			
Oakland, CA 94612-3215			Preparatio	on:		T22.11.5. All			
			Method:				EPA 6010B		
			Units:				mg/L		
Project: ISRI MSR Treatability S	Study / 0102.001.00)4				Pa	ge 5 of 5		
Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/Time	QC Batch ID		

Method Blank	097-05-006-8919	N/A	Aqueous	ICP 7300	02/08/17	02/13/17 11:27	170210LA6
Parameter		<u>Result</u>	<u>R</u>	L	DF	Quali	fiers
Cadmium		ND	0.	100	1.00		
Lead		ND	0.	100	1.00		
Zinc		ND	0.	100	1.00		

Terraphase Engineering, Inc.	Date Received:	02/08/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0637
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Instru	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-02-0657-1	Sample		Solid	ICP 7	7300	02/10/17	02/13/17	12:06	170210S02	
17-02-0657-1	Matrix Spike		Solid	ICP 7	7300	02/10/17	02/13/17	12:07	170210S02	
17-02-0657-1	Matrix Spike I	Duplicate	Solid	ICP 7	7300	02/10/17	02/13/17	12:07	170210S02	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	MSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Cadmium	1.208	25.00	23.39	89	25.10	96	75-125	7	0-20	
Lead	5.020	25.00	27.30	89	27.88	91	75-125	2	0-20	
Zinc	118.6	25.00	145.8	4X	130.3	4X	75-125	4X	0-20	Q

Quality Control - Spike/Spike Duplicate

Terraphase Engineering, Inc.	Date Received:	02/08/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0637
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.	.004	Page 2 of 2

Project: ISRI MSR Treatability Study / 0102.001.004

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-01-2603-22	Sample		Solid	ICP	7300	02/08/17	02/13/17	11:29	170210SA6	
17-01-2603-22	Matrix Spike		Solid	ICP	7300	02/08/17	02/13/17	11:32	170210SA6	
17-01-2603-22	Matrix Spike I	Duplicate	Solid	ICP	7300	02/08/17	02/13/17	11:33	170210SA6	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	MSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Cadmium	ND	5.000	5.287	106	4.905	98	75-125	8	0-20	
Lead	2.679	5.000	7.418	95	7.070	88	75-125	5	0-20	
Zinc	3.616	5.000	8.824	104	8.282	93	75-125	6	0-20	

RPD: Relative Percent Difference. CL: Control Limits

0-20

0-20

0-20

Q

3

4

4X

Cadmium

Lead

Zinc

Terraphase Engineering, Inc				Da	ate Received	:					02/08/17
1404 Franklin Street, Suite 6	00			W	ork Order:					1	7-02-0637
Oakland, CA 94612-3215				Pi	reparation:					E	PA 3050B
				М	ethod:					E	PA 6010B
Project: ISRI MSR Treatabilit	ty Study /	0102.001.00	4							Page 1	of 1
Quality Control Sample ID	Туре		Ma	atrix	Instrument	Date Pre	pared	Date Analy	/zed	PDS/PDSD Number	Batch
17-02-0657-1	Sample		Sc	olid	ICP 7300	02/10/17	00:00	02/13/17 1	2:06	170210S02	
17-02-0657-1	PDS		Sc	olid	ICP 7300	02/10/17	00:00	02/14/17 1	2:32	170210S02	
17-02-0657-1	PDSD		Sc	olid	ICP 7300	02/10/17	00:00	02/14/17 1	2:35	170210S02	
Parameter	Sample	Spike PE	<u> </u>	PDS % Data	PDSD	PDSD	<u>%Rec</u>	<u>. CL</u> RPD		<u>RPD CL</u>	<u>Qualifiers</u>

Conc. Added Conc. <u>%Rec.</u> Conc. <u>%Rec.</u> 1.208 25.00 75-125 24.61 94 23.81 90 5.020 25.00 28.49 94 27.37 75-125 89 118.6 25.00 139.7 4X 140.3 4X 75-125

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Sample Duplicate

Terraphase Engineering, Inc.	Date Received:	02/08/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0637
Oakland, CA 94612-3215	Preparation:	N/A
	Method:	ASTM D-2216 (M)
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
SSP-4L-1-U	Sample	Solid	N/A	02/13/17 00:00	02/13/17 19:00	H0213MOID1
SSP-4L-1-U	Sample Duplicate	Solid	N/A	02/13/17 00:00	02/13/17 19:00	H0213MOID1
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Moisture		38.50	36.00	7	0-10	

🛟 eurofins Calscience

Terraphase Engineering, Inc.	Date Received:	02/08/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0637
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed LCS Batc	h Number
097-01-002-24330	LCS	Solid	ICP 7300	02/10/17	02/13/17 12:02 170210L0)2
Parameter		Spike Added	Conc. Recovered	ed <u>LCS %Re</u>	ec. <u>%Rec. CL</u>	<u>Qualifiers</u>
Cadmium		25.00	24.18	97	80-120	
Lead		25.00	23.85	95	80-120	
Zinc		25.00	23.68	95	80-120	

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins Calscience

Terraphase Engineering, Inc.	Date Received:	02/08/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0637
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-05-006-8919	LCS	Aqueous	ICP 7300	02/08/17	02/13/17 11:28	170210LA6
Parameter		Spike Added	Conc. Recover	red LCS %Re	ec. <u>%Rec</u> .	CL Qualifiers
Cadmium		5.000	4.644	93	80-120)
Lead		5.000	4.385	88	80-120)
Zinc		5.000	4.853	97	80-120)

RPD: Relative Percent Difference. CL: Control Limits

Page 1 of 1

Calscience

Work Order: 17-02-0637

Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-2216 (M)	N/A	1050	N/A	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 6010B	T22.11.5. All	935	ICP 7300	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

🔅 eurofins

Calscience

Work Order: 17-02-0637

Glossary of Terms and Qualifiers

Page 1 of 1 **Qualifiers** Definition * See applicable analysis comment. Less than the indicated value. < > Greater than the indicated value. Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further 1 clarification. 2 Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 3 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. ΒU Sample analyzed after holding time expired. ΒV Sample received after holding time expired. CI See case narrative. F Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. HD The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected). HDL The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected). J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated. JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. Х % Recovery and/or RPD out-of-range. Ζ Analyte presence was not confirmed by second column or GC/MS analysis. Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

> A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

ORD																									Page 25 of 2	Page 25 of 29
J. C	۰۰ •	2			NT) Store are	rzefy					· ·													Time:	Тіте: 1:00 Р. Гіте: 1:00 Р. Гіте:	Тіте: 1:00 Р. Р. Г. 1:00 Р. Р. Г.
OF CUST	الح	OF	P.O. NO.:		SAMPLER(S): (PRIN	Huge on	YSES								, ,		-							e:	E. 17/2017	ei Ei Ei Ei Ei Ei Ei Ei Ei Ei E
CHAIN	DATE: 2/6/1	PAGE:		(a) and		@terraphase.com	ESTED ANALY	i blank as needed.																		Date Date
			SER:	tudy / 0102.001.00		7179 emily.mosen	REQUE	e check box or fill in		•		- - -												77 8247)	77 8247)	17 8247)
	BUSE DNLY	-02-06	ROJECT NAME / NUME	ISR Treatability S	r contact:	Mosen: 510-779-7		Pleas	9122	(II SO MTSA '	-A.3.11.SS vd tnetnoo	CCR T loisture	N X 8 V	X	X	X		- × /	XX					X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X
•	WO#//FV		CLIENT PI	ISRI M	PROJECT	Emily I				010) 0103 A9	Pb, Zn (E Zn (EPA 60	NET Ca, a, Pb, Z		X X	х Х	x X	× ×		× × ×	XX	× × × ×	<u>, X X X</u>			nature/Affiliation	A X X X X X X X X X X X X X X X X X X X
						94612					pa pə∧⊮	Jubrese		X	X	X	X		X	XX	XXX	XXXX	X X >	Neded by: (Sign	として、 とので、 ため をが、 (5) (5) (5) (5) (5) (5) (5) (5)	$\begin{array}{ c c c } \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
			om or call us.			CA	@terraphase					X OF OF		-		-	J 1	The second se	-							
)eurofinsus.c			STATE:	mily.mosen		LI 5 DAY			MATRU	Solid	Solid	21/05	Solve	Soli,		Solid	Salid	Salid Salid Salid	siles siles	solid Silos bilos	piles ziles	piles ziles	piles ziles
	nce	t) 895-5494	us26_sales@	-			ē	"STANDARD"):	1 /2 HK			PLING	100	1215	1315	141S	1100		1215	1215	1215 1315 1415	1215 1315	1215	1215	1215	1215
	Calscie	2841-1427 • (714	ormation, contact	Engineering	iite 600		E-MAIL:	apply to any TAT not	LI 48 HK L			SAM	2/6/17	2/6/17	2/6/17	2/6/17	2/6/17		2/6/17	2/6/17	2/6/17 2/6/17 2/6/17	2/6/17 2/6/17 2/16/17	2/6/17 2/6/17 2/6/17	2/6/17 2/6/17 10/12	2/6/17 2/6/17	2/6/17
rc ns l		i Way, Garden Grove, CA 92	service / sample drop off info ?Y CLIENT:	Terraphase t	1404 Fraklin Street, Sui	dand	-645-1850	ND TIME (Rush surcharges may a	E DAY LI 24 HR I T EDF GLOBALID:	STRUCTIONS:		SAMPLE ID	n-1-7h-d	P-4L-2-V	:p-41-3-V	1-41-4-N	1-1-H-d		P. 4-2-L	P- 4-2-L	P-4-2-L SP-4-3-L P-4-4-L	P-4-2-L SP-4-3-L P-4-4-L	P-4-2-L P-4-3-L	P- 4-2-L 5p-4-2-L P-4-4-L	P- 4 - 2- L 2 - 4 - 4 - L P- 4 - 4 - L	P- 4 - 2- L P- 4 - 3- L P- 4 - 4 - L P- 4 - 4 - L P- 4 - 4 - L P- 4 - 1 - L
	ر مر	440 Lincoln	or courier s LABORATOR		AUURESS.	citry: Oak	TEL: 510-	TURNAROUI		SPECIAL INS		LAB' USE	1 SS	2	\$	4 55	<u>S</u>		ss 💧	<u>z s</u>	<u> </u>	<u> </u>	<u> </u>	Relinute S	Relinduist Relinduist	Relinquist

10.2

Return to Contents

E rc ns				•	7				ช 	HAIN OF	CUST	CC CC	RD
	Calscience					VO#./LAE	I USE DNLY		DATE	2/19/1-	4		
40 Lincoln Way, Garden Grove, CA 92 r courier service / sample drop off info	:841-1427	Deurofinsus.com e	or call us.				V	67	PAGE	7	ЧО	2	
ABORATORY CLIENT: Terraphase E	ingineering					ISRI M	OJECT NAM SR Treat:	ie / NUMBER: Ibility Study / 010	12.001.00 <i>4</i>	P.O.	NO.:		
(DDRESS: 1404 Fraklin Street, Su	ite 600					ROJECT	CONTACT:			SAM	IPLER(S): (PRINT	22.000	
Sity: Oakland		STATE: (A ZIP	94612		Emily N	losen: 51	0-779-7179 emil	y.mosen@terraphase	com K	ATT HE	gota	х.
EL: 510-645-1850	E-MAIL:	emily.mosen@te	erraphase.o	E					REQUESTED A	NAL YSE	6	ſ	
TURNAROUND TIME (Rush surcharges may i □ SAME DAY □ 24 HR 1	apply to any TAT not "STANDARD")	E 5 DAYS	Å STAN	DARD				Please check b	ox or fill in blank as ne	eded.			
				LOG CODE:			9122						
SPECIAL INSTRUCTIONS:						0109 \	a Mte.						
				r veq	red) (EPA 601((II-A.c.IT.S A vd fnefno:						
(AB.) [SMI IDMAS		NO.	nese erve	əflif	Cq' I	nue c						
USE SAMPLE ID	DATE TIME	MATRIX	OF CONT.	nqnU sərq	bləi7	MET Cd, P	vo s						
9 SSP-46-5-U	2/6/17 1505	Salid		×		X	X						
0 SSP-41-6-U	2/6/17 1615	Sulid	_	X		× ×	X						
11 SSP-41-7-U	2/6/17 1715	Sel val	-	×		\times	8						
15 SSP-46- 8-U	2/6/17 1815	Solid	-	X		× X	X						
1-5-H-055	2/6/17 1515	Selid	-	×		$\frac{x}{x}$	X						
1 SSP-4-6-L	2/6/17 1615	ر الافراد ا		×		X X	X						
5 SSP- 4-7-L	2/6/7 17/2	r Salid	-	*		$\frac{x}{x}$	X X X						
6 55P-4-8-L	216/17 1815	1913	-	メ		N X	X						
						$\frac{1}{2}$							
		-											P
Relinquistrectory. Algrammer of			Rece	ived by: (Sig edex じ	Inature/A	filiation) ハヘ 井	-7783	70778101		$\begin{bmatrix} Date: \\ 2/7 \end{bmatrix}$	12017	Time:]:00 p M	ige 2 6
Relinquished the (Signature)			Rece	ived by: (Sig	Inature/A	filiation)			12 MA	Date: $2/6$	17	Time:) of 2 9
Relinquished by: (Signature)			Rece	ived by: (Sig	jnature/A	filiation)			on All	Date:/ /		Time:)
			_										٦

ı, L.

06/02/14 Revision

Return to Contents

Page 27 of 29

663

"

te:

💸 eurofins	N	WORK ORDER	NUMBER: '	Page 2 17-02	28 of 29 2– C) 2637
Calscience	SAMPLE RECEIPT C	HECKLIST	C	DOLER	0	0f
CLIENT: Terraphase	Engly.		DAT	E: 02	108	/ 2017
TEMPERATURE: (Criteria: 0.0°C – 1 Thermometer ID: SC3B (CF: 0.0°C); □ Sample(s) outside temperature □ Sample(s) outside temperature □ Sample(s) received at ambient temperature Ambient Temperature: □ Air □ Filter	6.0°C, not frozen except sedimen Temperature (w/o CF): $2 \circ \cdot \cdot$ e criteria (PM/APM contacted by: e criteria but received on ice/chille mperature; placed on ice for trans er	t/tissue) <u> </u> C (w/ CF): IS) d on same day o port by courier	<u>2○・牛</u> ∘C; ⊏ f sampling] Blank , Checke	San	nple iS
CUSTODY SEAL:Cooler□ Present and IntactSample(s)□ Present and Intact	□ Present but Not Intact ↓ □ Present but Not Intact ↓	ØOX 1/2 I Not Present ØNot Present	□ N/A □ N/A	Checke Checke	ed by: ed by:	15 876
SAMPLE CONDITION:				Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples		••••••	Ø		
COC document(s) received complete	9	·····		کر	Ш	
Sampling date D Sampling til	me LI Matrix LI Number of cont	ainers	autobod timo			
Li No analysis requested Li Not			iquisned time			
Sampler's hame indicated on COC						
Sample container label(s) consistent	ad condition			р Г	<u>п</u>	
Broper container(s) intact and in go		• • • • • • • • • • • • • • • • • • • •				
Sufficient volume/mass for analyses	roquested			₽ 7		
Samples received within holding time					п	
Aqueous samples for cortain ana	vses received within 15-minute h	oldina time		<i>Y</i> 2	-	-
	Dissolved Sulfide . Dissolved O			п	п	Я
Proper property ation chemical(s) not	ad on COC and/or sample contair	vygen				Г Г
Unpreserved aqueous sample(s)	received for certain analyses tals				_	
Container(s) for certain analysis free	of headspace					Ø
□ Volatile Organics □ Dissolved	d Gases (RSK-175) 🛛 Dissolved	d Oxygen (SM 45	00)			
□ Carbon Dioxide (SM 4500) □	Ferrous Iron (SM 3500) D Hydr	rogen Sulfide (Ha	ach)			
Tedlar™ bag(s) free of condensation	۱					9
CONTAINER TYPE:		(Trip Blan	k Lot Numbe	r:)
Aqueous: 🗆 VOA 🗆 VOAh 🗆 VOA	.na₂ □ 100PJ □ 100PJna₂ □ 1	25AGB 🗖 125A	GBh 🛛 125A0	GBp □	125PB	
□ 125PB znna □ 250AGB □ 250C0	GB □ 250CGB s □ 250PB □ 25	50PBn 🛛 500AG	B □ 500AGJ	□ 500A	\GJ s	
□ 500PB □ 1AGB □ 1AGBna ₂ □	1AGBs 🗆 1PB 🗆 1PBna 🗆		□	🛛	-	
Solid: 40zCGJ 80zCGJ 160	ozCGJ □ Sleeve () □ EnC	ores [®] ()	I TerraCores [®] ()	Ø <u>1.5</u>	<u></u>
Air: □ Tedlar™ □ Canister □ Sorb	ent Tube D PUF D	Other Matrix (): □	,	_ □ _	
Container: A = Amber, B = Bottle, C = C Preservative: b = buffered, f = filtered, h s = H ₂ SO ₄ , u = ultra-pure,	lear, E = Envelope, G = Glass, J = Ja = HCl, n = HNO ₃ , na = NaOH, na ₂ = x = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna = Z	ar, \mathbf{P} = Plastic, and Na ₂ S ₂ O ₃ , \mathbf{p} = H ₃ P In (CH ₃ CO ₂) ₂ + Nat	Z = Ziploc/Rese O₄, Labelec OH	ealable Ba I/Checke Reviewe	ag ed by: <u>2</u> ed by: 7	376 778

🔅 eurofins			WORK ORDER	NUMBER:	Page 2 17-02	29 of 29 2- <u></u>	637
	Calscience	SAMPLE RECEIPT	CHECKLIST	с	OOLER	0	or_∂
CLIENT: Te	rraphas	e Engig.		DA	TE: 02	108	/ 2017
TEMPERATURE: (C Thermometer ID: SC Sample(s) outs Sample(s) outs Sample(s) receive Ambient Temperatur	Friteria: 0.0°C – 6.0 3B (CF: 0.0°C); T de temperature c de temperature c d at ambient temp e: □ Air □ Filter	D°C, not frozen except sedime emperature (w/o CF): $2O$ - riteria (PM/APM contacted by riteria but received on ice/chil perature; placed on ice for tran	ent/tissue) <u>6</u> °C (w/ CF): <u>2</u> r: <u>15</u>) led on same day of nsport by courier	O -ん°C; I f sampling	⊐ Blank ֻ Checke	Sam	15
CUSTODY SEAL: Cooler	sent and Intact sent and Intact	□ Present but Not Intact □ Present but Not Intact	Box 2/2 Not Present	□ N/A □ N/A	Checke	ed by: ed by:	15 836
SAMPLE CONDITIO	DN:				Yes	No	N/A
Chain-of-Custody (C	OC) document(s)	received with samples			Ø		
COC document(s) re	ceived complete □ Sampling time	e □ Matrix □ Number of co	ntainers		Ø		
No analysis rec	quested 🛛 Not re	linquished D No relinquishe	d date D No relin	quished time	_		4
Sampler's name indi	cated on COC				Ø		
Sample container lat	pel(s) consistent w	vith COC	•••••••••••••••••••••••••••••••••••••••		Ø		
Sample container(s)	intact and in good	I condition					
Proper containers for	r analyses reques	ted	•••••••••••••••••••••••••••••••••••••••		Ŗ		
Sufficient volume/ma	ass for analyses re	equested			7		
Samples received wi	ithin holding time				A		
Aqueous samples	s for certain analys	ses received within 15-minute	holding time				
🗆 pH 🗆 Residua	al Chlorine 🛛 Dis	solved Sulfide Dissolved	Oxygen				Ø
Proper preservation Unpreserved aque	chemical(s) noted eous sample(s) re ics □ Total Metal	on COC and/or sample conta ceived for certain analyses b Dissolved Metals	ainer				
Container(s) for certa	ain analysis free o cs □ Dissolved ((SM 4500) □ E	f headspace Gases (RSK-175) □ Dissolv errous Irop (SM 3500) □ Hy	ed Oxygen (SM 45	00) ch)			Ą
Tedlar [™] bag(s) free	of condensation						
			(Trin Blan	k Lot Numbe	۵r.		
Aqueous: □ VOA □ □ 125PBznna □ 25 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ C Container: A = Amber,	J VOAh \Box VOAna $0AGB$ \Box 250CGE \Box 1AGBna2 \Box 1A $8ozCGJ$ \Box 16oz canister \Box Sorber B = Bottle, C = Clear	a₂ □ 100PJ □ 100PJna₂ □ 3 □ 250CGBs □ 250PB □ AGBs □ 1PB □ 1PBna □_ CGJ □ Sleeve () □ Er It Tube □ PUF □ ar, E = Envelope, G = Glass, J =	125AGB □ 125AG 250PBn □ 500AG □ □ Cores [®] () □ Other Matrix (Jar, P = Plastic, and	BBh □ 125A B □ 500AG □ TerraCores [®]): □ Z = Ziploc/Res	GBp □ J □ 500/ () J sealable B	125PB AGJs <u>21-5</u> 	
Preservative: b = buffe s = H ₂ SC	red, $\mathbf{f} = \text{filtered}, \mathbf{h} = \mathbf{D}_4, \mathbf{u} = \text{ultra-pure}, \mathbf{x} = \mathbf{D}_4$	HCl, n = HNO ₃ , na = NaOH, na₂ = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna =	= Na ₂ S ₂ O ₃ , p = H ₃ PO Zn (CH ₃ CO ₂) ₂ + NaO	D₄, Labele ⊃H	d/Checke Reviewe	ed by: ed by:	יי דער גר

.

WORK ORDER NUMBER: 17-02-0769

Calscience

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Terraphase Engineering, Inc. Client Project Name: ISRI MSR Treatability Study / 0102.001.004 Attention: Emily Mosen 1404 Franklin Street

Suite 600 Oakland, CA 94612-3215

Approved for release on 02/22/2017 by: Don Burley Project Manager

ResultLink)

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🛟 eurofins

Calscience

Contents

Client Pi Work Or	roject Name: der Number:	ISRI MSR Treatability Study / 0102.001.004 17-02-0769	
1	Work Or	der Narrative	3
2	Sample	Summary	4
3	Client Sa 3.1 AST 3.2 CA 3.3 EPA 3.4 EPA 3.5 EPA 3.6 EPA 3.7 EPA	ample Data.TM D-2216 (M) Moisture Content (Solid).Fish and Game 96-Hour Acute Aquatic Bioassay (Solid).A 6010B/7471A CAC Title 22 Metals (Solid).A 6010B STLC ICP Metals (Aqueous).A 7470A STLC Mercury (Aqueous).A 7471A Mercury (Solid).A 8082 PCB Aroclors (Solid).	5 8 16 33 50 53 56
4	Quality (4.1 MS/ 4.2 San 4.3 LCS	Control Sample Data	61 61 66 67
5	Sample	Analysis Summary	72
6	Glossary	y of Terms and Qualifiers	73
7	Chain-of	f-Custody/Sample Receipt Form	74

Work Order: 17-02-0769

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 02/09/17. They were assigned to Work Order 17-02-0769.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Client:	Terraphase Engineeri	ng, Inc.	Work Order:	17-02-0769
	1404 Franklin Street, S	Suite 600	Project Name:	ISRI MSR Treatability Study / 0102.001.004
	Oakland, CA 94612-32	215	PO Number:	
			Date/Time Received:	02/09/17 10:20
			Number of Containers:	16
Attn:	Emily Mosen			
Sample lo	lentification	Lab Number	Collection Date and Tim	ne Number of Matrix Containers

P			Containers	
SSP-4M-1-U	17-02-0769-1	02/07/17 09:00	1	Solid
SSP-4M-2-U	17-02-0769-2	02/07/17 10:00	1	Solid
SSP-4M-3-U	17-02-0769-3	02/07/17 11:00	1	Solid
SSP-4-1-M	17-02-0769-4	02/07/17 09:00	1	Solid
SSP-4-2-M	17-02-0769-5	02/07/17 10:00	1	Solid
SSP-4-3-M	17-02-0769-6	02/07/17 11:00	1	Solid
SSP-4M-4-U	17-02-0769-7	02/07/17 12:30	1	Solid
SSP-4M-5-U	17-02-0769-8	02/07/17 13:30	1	Solid
SSP-4M-6-U	17-02-0769-9	02/07/17 14:30	1	Solid
SSP-4-4-M	17-02-0769-10	02/07/17 12:30	1	Solid
SSP-4-5-M	17-02-0769-11	02/07/17 13:30	1	Solid
SSP-4-6-M	17-02-0769-12	02/07/17 14:30	1	Solid
SSP-4M-7-U	17-02-0769-13	02/07/17 15:30	1	Solid
SSP-4M-8-U	17-02-0769-14	02/07/17 16:30	1	Solid
SSP-4-7-M	17-02-0769-15	02/07/17 15:30	1	Solid
SSP-4-8-M	17-02-0769-16	02/07/17 16:30	1	Solid

Terraphase Engineering, Inc.			Date Re	eceived:			02/09/17
1404 Franklin Street, Suite 600			Work O	rder:			17-02-0769
Oakland, CA 94612-3215			Prepara	tion:			N/A
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Study	y / 0102.001.004					Ра	ge 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrumen	t Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-1-U	17-02-0769-1-A	02/07/17 09:00	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		Result		<u>RL</u>	DF	Qua	lifiers
Moisture		50		0.10	1.00		
SSP-4M-2-U	17-02-0769-2-A	02/07/17 10:00	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		31		0.10	1.00		
SSP-4M-3-U	17-02-0769-3-A	02/07/17 11:00	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		40		0.10	1.00		
SSP-4-1-M	17-02-0769-4-A	02/07/17 09:00	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		51		0.10	1.00		
SSP-4-2-M	17-02-0769-5-A	02/07/17 10:00	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		42		0.10	1.00		
SSP-4-3-M	17-02-0769-6-A	02/07/17 11:00	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		34		0.10	1.00		
SSP-4M-4-U	17-02-0769-7-A	02/07/17 12:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		33		0.10	1.00		
SSP-4M-5-U	17-02-0769-8-A	02/07/17 13:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>llifiers</u>
Moisture		44		0.10	1.00		

Terraphase Engineering, Inc.			Date Re	ceived:			02/09/17
1404 Franklin Street, Suite 600			Work O	rder:			17-02-0769
Oakland, CA 94612-3215			Prepara	tion:			N/A
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Stud	y / 0102.001.004					Pa	ge 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-6-U	17-02-0769-9-A	02/07/17 14:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		29		0.10	1.00		
SSP-4-4-M	17-02-0769-10-A	02/07/17 12:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		45		0.10	1.00		
SSP-4-5-M	17-02-0769-11-A	02/07/17 13:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		41		0.10	1.00		
SSP-4-6-M	17-02-0769-12-A	02/07/17 14:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>
Moisture		32		0.10	1.00		
SSP-4M-7-U	17-02-0769-13-A	02/07/17 15:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		43		0.10	1.00		
SSP-4M-8-U	17-02-0769-14-A	02/07/17 16:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		27		0.10	1.00		
SSP-4-7-M	17-02-0769-15-A	02/07/17 15:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		35		0.10	1.00		
SSP-4-8-M	17-02-0769-16-A	02/07/17 16:30	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		45		0.10	1.00		

Terraphase Engineering, Inc.		Date Rec	eived:	02/09/17				
1404 Franklin Street, Suite 600				der:	17-02-0769			
Oakland, CA 94612-3215			Preparati	on:		N/A		
			Method:			AST	M D-2216 (M)	
			Units:				%	
Project: ISRI MSR Treatability Stud	ly / 0102.001.004					Pa	ge 3 of 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank	099-05-014-6696	N/A	Solid	N/A	02/13/17	02/13/17 20:00	H0213MOIB2	
Parameter		<u>Result</u>		RL	DF	Qua	lifiers	
Moisture		ND		0.10	1.00			

Terraphase Engi	neering, Inc.	Date Received:		02/09/1	
1404 Franklin St	reet, Suite 600	Work Order:		17-02-0769	
Oakland, CA 946	612-3215	Preparation:			N/A
		Method:		CA Fi	sh and Game
Project: ISRI MS	R Treatability Study / 0102.001.004			Pa	ge 1 of 8
Test Species:	Fathead Minnow (Pimephales Promelas)	Mean Length:	43 mm	Mean Weight:	0.46 g
Sample Collected:	02/07/17 09:00:00	Sample Received:	02/09/17 10:20:00		
Test Start:	02/14/17 19:00:00	Test End:	02/18/17 19:00:00		
	Initial Wate	er Quality Parameters			
Residual Chlorine:	< 0.01 mg/L	Temperature:	19.8 °C		
pH:	7.84 units	Conductivity:	910 umhos/cm		
Dissolved Oxygen (D	D.O.): 7.21 mg/L	Alkanlinity:	196 mg/L		
Hardness:	42 mg/L	Ammonia:	N/A		
	Sam	ple Preparation			
The sample was adju	sted to test temperature.				
	Sample Adju	stment During Analysis			
No Supplemental aer	ation needed.				

If needed, supplemental aeration to maintain required Dissolved Oxygen level is supplied via a low pressure oil-free pump connected to individual lines for each tank/chamber from a common manifold. Individual valves at each tank/chamber control the flow rate as required.

Client Sample Number	Lab Sample Numb	er Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-1-M	17-02-0769-4	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	<u>Result</u>	<u>Units</u>				
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				
	l	aboratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):	24.20
Upper 95% confidence limit:	25.70
Lower 95% confidence limit:	22.80

LC 50 Results

Terraphase Eng	neering, Inc.	Date Received:		02/09/17		
1404 Franklin St	reet, Suite 600	Work Order:		17-02-0769		
Oakland, CA 94612-3215		Preparation:			N/A	
		Method:		CA Fi	sh and Game	
Project: ISRI MS	R Treatability Study / 0102.001.004	1		Paç	ge 2 of 8	
Test Species:	Fathead Minnow (Pimephales Promelas)	Mean Length:	43 mm	Mean Weight:	0.46 g	
Sample Collected:	02/07/17 10:00:00	Sample Received:	02/09/17 10:20:00			
Test Start:	02/14/17 19:00:00	Test End:	02/18/17 19:00:00			
	Ini	tial Water Quality Parameters				
Residual Chlorine:	< 0.01 mg/L	Temperature:	19.8 °C			
pH:	7.82 units	Conductivity:	910 umhos/cm			
Dissolved Oxygen (E	0.O.): 7.17 mg/L	Alkanlinity:	196 mg/L			
Hardness:	42 mg/L	Ammonia:	N/A			
		Sample Preparation				
The sample was adju	sted to test temperature.					
	Sam	ple Adjustment During Analysis				
No Supplemental aer	ation needed.					

If needed, supplemental aeration to maintain required Dissolved Oxygen level is supplied via a low pressure oil-free pump connected to individual lines for each tank/chamber from a common manifold. Individual valves at each tank/chamber control the flow rate as required.

Client Sample Number	Lab Sample Numbe	er Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-2-M	17-02-0769-5	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	<u>Result</u>	<u>Units</u>				
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				
	L	aboratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):24.20Upper 95% confidence limit:25.70Lower 95% confidence limit:22.80

LC 50 Results

Terraphase Engineering, Inc.		Date Received:			02/09/17	
1404 Franklin S	treet, Su	lite 600	Work Order:		17-02-0769	
Oakland, CA 94	612-321	5	Preparation:			N/A
			Method:		CA Fi	sh and Game
Project: ISRI MS	SR Treat	ability Study / 0102.001.004			Pa	ge 3 of 8
Test Species:	Fathead	l Minnow (Pimephales Promelas)	Mean Length:	43 mm	Mean Weight:	0.46 g
Sample Collected:	02/07/17	7 11:00:00	Sample Received:	02/09/17 10:20:00		
Test Start:	02/14/17	7 19:00:00	Test End:	02/18/17 19:00:00		
		Initial Wa	ater Quality Parameters			
Residual Chlorine:		< 0.01 mg/L	Temperature:	19.8 °C		
pH:		7.85 units	Conductivity:	910 umhos/cm		
Dissolved Oxygen (I	D.O.):	7.24 mg/L	Alkanlinity:	196 mg/L		
Hardness:		42 mg/L	Ammonia:	N/A		
		Sa	mple Preparation			
The sample was adju	usted to te	st temperature.				
		Sample Ad	justment During Analysis			
No Supplemental ae	ration nee	ded.				
If needed suppleme	ntal aerati	on to maintain required Dissolved Oxyger	n level is supplied via a low i	oressure oil-free pump	connected to indivi	dual lines for
each tank/chamber f	rom a con	amon manifold. Individual valves at each t	ank/chamber control the flor	w rate as required		

Client Sample Number	Lab Sample Nun	nber Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-3-M	17-02-0769-6	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	Result	<u>Units</u>				
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				
		Laboratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):	24.20
Upper 95% confidence limit:	25.70
Lower 95% confidence limit:	22.80

LC 50 Results

Return to Contents

Terraphase Engineering, Inc.			Date R	eceived:		02/09/17 17-02-0769		
1404 Franklin S	1404 Franklin Street, Suite 600			rder:				
Oakland, CA 94612-3215			Prepara	ation:			N/A	
			Method	:		CA Fi	sh and Game	
Project: ISRI MS	SR Trea	tability Study / 0102.001.004					Page 4 of 8	
Test Species:	Fathead	Minnow (Pimephales Promelas)	Mean Le	ngth:	43 mm	Mean Weight:	0.46 g	
Sample Collected:	02/07/1	7 12:30:00	Sample F	Received:	02/09/17 10:20:00			
Test Start:	02/14/1	7 19:00:00	Test End	:	02/18/17 19:00:00			
		Initia	I Water Quality Para	meters				
Residual Chlorine:		< 0.01 mg/L	Tempera	ture:	19.8 °C			
pH:		7.84 units	Conducti	vity:	910 umhos/cm			
Dissolved Oxygen (I	D.O.):	7.2 mg/L	Alkanlinit	y:	196 mg/L			
Hardness:		42 mg/L	Ammonia	.:	N/A			
			Sample Preparation	า				
The sample was adju	usted to te	est temperature.						
		Sample	Adjustment During	Analysis				
No Supplemental ae	ration nee	eded.						

If needed, supplemental aeration to maintain required Dissolved Oxygen level is supplied via a low pressure oil-free pump connected to individual lines for each tank/chamber from a common manifold. Individual valves at each tank/chamber control the flow rate as required.

Client Sample Number	Lab Sample Numl	ber Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-4-M	17-02-0769-10	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	<u>Result</u>	<u>Units</u>				
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				
		Laboratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):	24.20
Upper 95% confidence limit:	25.70
Lower 95% confidence limit:	22.80

LC 50 Results

Terraphase Engineering, Inc.	Date Received:		02/09/17 17-02-0769		
1404 Franklin Street, Suite 600	Work Order:				
Oakland, CA 94612-3215	Preparation:			N/A	
	Method:		CA Fis	h and Game	
Project: ISRI MSR Treatability Study / 0102.001.004			Page	e 5 of 8	
Test Species: Fathead Minnow (Pimephales Promelas)	Mean Length:	43 mm	Mean Weight:	0.46 g	
Sample Collected: 02/07/17 13:30:00	Sample Received:	02/09/17 10:20:00			
Test Start: 02/14/17 19:00:00	Test End:	02/18/17 19:00:00			
Initial Water Qu	ality Parameters				
Residual Chlorine: < 0.01 mg/L	Temperature:	19.8 °C			
pH: 7.84 units	Conductivity:	910 umhos/cm			
Dissolved Oxygen (D.O.): 7.15 mg/L	Alkanlinity:	196 mg/L			
Hardness: 42 mg/L	Ammonia:	N/A			
Sample F	reparation				
The sample was adjusted to test temperature.					
Sample Adjustme	nt During Analysis				
No Supplemental aeration needed.					
If needed, supplemental aeration to maintain required Dissolved Oxygen level	s supplied via a low p	pressure oil-free pump	connected to individu	ual lines for	

Client Sample Number	Lab Sample Num	ber Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-5-M	17-02-0769-11	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	Result	<u>Units</u>				·
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				
		Laboratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):	24.20
Upper 95% confidence limit:	25.70
Lower 95% confidence limit:	22.80

LC 50 Results

Terraphase Engineering, Inc.			Date Received:		02/09/17	
1404 Franklin Street, Suite 600 Oakland, CA 94612-3215			Work Order:		17-02-0769	
			Preparation:			N/A
			Method:		CA Fi	sh and Game
Project: ISRI MS	SR Trea	atability Study / 0102.001.004			Pa	ge 6 of 8
Test Species:	Fathea	d Minnow (Pimephales Promelas)	Mean Length:	43 mm	Mean Weight:	0.46 g
Sample Collected:	02/07/1	7 14:30:00	Sample Received:	02/09/17 10:20:00		
Test Start:	02/14/1	7 19:00:00	Test End:	02/18/17 19:00:00		
		Initial Wa	ater Quality Parameters			
Residual Chlorine:		< 0.01 mg/L	Temperature:	19.8 °C		
pH:		7.86 units	Conductivity:	910 umhos/cm		
Dissolved Oxygen (I	D.O.):	7.21 mg/L	Alkanlinity:	196 mg/L		
Hardness:		42 mg/L	Ammonia:	N/A		
		Sa	mple Preparation			
The sample was adju	usted to t	est temperature.				
		Sample Ad	justment During Analysis			
No Supplemental ae	ration ne	eded.				
If needed, suppleme	ntal aerat	tion to maintain required Dissolved Oxyge	n level is supplied via a low i	pressure oil-free pump	connected to indivi	dual lines for

each tank/chamber from a common manifold.	Individual valves at each ta	ank/chamber contr	ol the flow r	ate as required.		
Client Sample Number	Lab Sample Number	Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-6-M	17-02-0769-12	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	<u>Result</u>	<u>Inits</u>				
Bioassay 750 mg/L (% Mortality)	0 %	6				
Bioassay 250 mg/L (% Mortality)	0 %	6				
	La	boratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):	24.20
Upper 95% confidence limit:	25.70
Lower 95% confidence limit:	22.80

LC 50 Results

Terraphase Engineering, Inc.			Date Received:		02/09/17	
1404 Franklin St	treet, Su	lite 600	Work Order:		17-02-0769	
Oakland, CA 94	612-321	5	Preparation:			N/A
			Method:		CA Fi	ish and Game
Project: ISRI MS	SR Treat	ability Study / 0102.001.004			Pa	ge 7 of 8
Test Species:	Fathead	l Minnow (Pimephales Promelas)	Mean Length:	43 mm	Mean Weight:	0.46 g
Sample Collected:	02/07/17	7 15:30:00	Sample Received:	02/09/17 10:20:00		
Test Start:	02/14/17	7 19:00:00	Test End:	02/18/17 19:00:00		
		Initial Wa	ater Quality Parameters			
Residual Chlorine:		< 0.01 mg/L	Temperature:	19.8 °C		
pH:		7.83 units	Conductivity:	910 umhos/cm		
Dissolved Oxygen (I	D.O.):	7.22 mg/L	Alkanlinity:	196 mg/L		
Hardness:		42 mg/L	Ammonia:	N/A		
		Sa	mple Preparation			
The sample was adju	usted to te	st temperature.				
		Sample Ad	justment During Analysis			
No Supplemental ae	ration nee	ded.				
If needed supplement	ntal aprati	on to maintain required Dissolved Oxyger	n level is sunnlied via a low i	oressure oil-free pump	connected to indivi	dual lines for
each tank/chamber f	rom a com	amon manifold. Individual valves at each t	tank/chamber control the flor	w rate as required		

each tank chamber nom a common mannou. Individual valves at each tank chamber control the now rate as required.						
Client Sample Number	Lab Sample Numb	per Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-7-M	17-02-0769-15	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	<u>Result</u>	<u>Units</u>				
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				
		Laboratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):	24.20
Upper 95% confidence limit:	25.70
Lower 95% confidence limit:	22.80

LC 50 Results

Return to Contents

Terraphase Engineering, Inc.			Date Received:		02/09/17			
1404 Franklin St	1404 Franklin Street, Suite 600			Work Order:		17-02-0769		
Oakland, CA 94612-3215			Preparation:		N/A			
				Method:		CA Fi	sh and Game	
Project: ISRI MS	SR Treatabili	ty Study / 0102.001.004				Pa	ge 8 of 8	
Test Species:	Fathead Minn	ow (Pimephales Promelas)		Mean Length:	43 mm	Mean Weight:	0.46 g	
Sample Collected:	02/07/17 16:3	0:00		Sample Received:	02/09/17 10:20:00			
Test Start: 02/14/17		00:00		Test End:	02/18/17 19:00:00			
		Initia	al Water Qu	ality Parameters				
Residual Chlorine:	< 0.	01 mg/L		Temperature:	19.8 °C			
pH:	7.83	3 units		Conductivity:	910 umhos/cm			
Dissolved Oxygen (I	D.O.): 7.17	7 mg/L		Alkanlinity:	196 mg/L			
Hardness:	42 r	ng/L		Ammonia:	N/A			
			Sample P	reparation				
The sample was adju	usted to test ten	nperature.						
		Sample	e Adjustme	nt During Analysis				
No Supplemental ae	ration needed.							

If needed, supplemental aeration to maintain required Dissolved Oxygen level is supplied via a low pressure oil-free pump connected to individual lines for each tank/chamber from a common manifold. Individual valves at each tank/chamber control the flow rate as required.

Client Sample Number	Lab Sample Num	ber Date Collected	Matrix	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-8-M	17-02-0769-16	02/07/17	Solid	02/14/17	02/18/17 19:00:00	
Parameter	<u>Result</u>	<u>Units</u>	-			
Bioassay 750 mg/L (% Mortality)	0	%				
Bioassay 250 mg/L (% Mortality)	0	%				
		Laboratory Notes				

Sample was received within recommended holding time.

All testing was within method protocol.

SRT sample (mg/L):24.20Upper 95% confidence limit:25.70Lower 95% confidence limit:22.80

LC 50 Results

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	EPA 3050B	
	Method:	EPA 6010B	
	Units:	mg/kg	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 17	

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-1-U		17-02-0769-1-A	02/07/17 09:00	Solid	ICP 7300	02/13/17	02/14/17 12:09	170213L02
Comment(s): - TI	he reporting limit is elev	ated resulting from m	atrix interferen	ce.				
Parameter			<u>Result</u>	<u>F</u>	<u> </u>	DF	<u>Qua</u>	<u>lifiers</u>
Antimony			14.6	7	7.14	9.52		
Arsenic			ND	7	7.14	9.52		
Barium			656	2	1.76	9.52		
Beryllium			ND	2	2.38	9.52		
Cadmium			13.3	2	1.76	9.52		
Chromium			62.7	2	2.38	9.52		
Cobalt			21.9	2	2.38	9.52		
Copper			3350	2	1.76	9.52		
Lead			608	2	1.76	9.52		
Molybdenum			18.2	2	2.38	9.52		
Nickel			124	2	2.38	9.52		
Selenium			ND	7	7.14	9.52		
Silver			4.33	2	2.38	9.52		
Thallium			ND	7	7.14	9.52		
Vanadium			7.76	2	2.38	9.52		
Zinc			11300	ç	9.52	9.52		

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	EPA 3050B	
	Method:	EPA 6010B	
	Units:	mg/kg	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 17	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-2-U	17-02-0769-2-A	02/07/17 10:00	Solid	ICP 7300	02/13/17	02/14/17 12:13	170213L02
Comment(s): - The reporting limit is ele	vated resulting from r	natrix interferen	ce.				
Parameter		<u>Result</u>	<u>F</u>	<u> </u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Antimony		13.6	7	.18	9.57		
Arsenic		ND	7	.18	9.57		
Barium		888	4	.78	9.57		
Beryllium		ND	2	2.39	9.57		
Cadmium		16.4	4	.78	9.57		
Chromium		67.3	2	2.39	9.57		
Cobalt		21.9	2	2.39	9.57		
Copper		1440	4	.78	9.57		
Lead		619	4	.78	9.57		
Molybdenum		22.8	2	2.39	9.57		
Nickel		169	2	2.39	9.57		
Selenium		ND	7	.18	9.57		
Silver		5.16	2	2.39	9.57		
Thallium		ND	7	.18	9.57		
Vanadium		9.06	2	2.39	9.57		
Zinc		9360	g	.57	9.57		

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	EPA 3050B	
	Method:	EPA 6010B	
	Units:	mg/kg	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 3 of 17	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-3-U	17-02-0769-3-A	02/07/17 11:00	Solid	ICP 7300	02/13/17	02/14/17 12:14	170213L02
Comment(s): - The reporting limit is	elevated resulting from r	natrix interferen	ce.				
Parameter		<u>Result</u>	<u>R</u>	<u>:L</u>	DF	<u>Qua</u>	lifiers
Antimony		13.4	7	.81	10.4		
Arsenic		ND	7	.81	10.4		
Barium		1050	5	.21	10.4		
Beryllium		ND	2	.60	10.4		
Cadmium		9.76	5	.21	10.4		
Chromium		71.7	2	.60	10.4		
Cobalt		19.4	2	.60	10.4		
Copper		423	5	.21	10.4		
Lead		742	5	.21	10.4		
Molybdenum		30.1	2	.60	10.4		
Nickel		125	2	.60	10.4		
Selenium		ND	7	.81	10.4		
Silver		6.75	2	.60	10.4		
Thallium		ND	7	.81	10.4		
Vanadium		8.76	2	.60	10.4		
Zinc		8290	1	0.4	10.4		
Return to Contents

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004	Page 4 of 17	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-1-M	17-02-0769-4-A	02/07/17 09:00	Solid	ICP 7300	02/13/17	02/14/17 12:15	170213L02
Comment(s): - The reporting limit is	s elevated resulting from r	natrix interferen	ce.				
Parameter		<u>Result</u>	<u>R</u>	<u>:L</u>	DF	<u>Qua</u>	lifiers
Antimony		8.43	7	.21	9.62		
Arsenic		8.82	7	.21	9.62		
Barium		666	4	.81	9.62		
Beryllium		ND	2	.40	9.62		
Cadmium		11.6	4	.81	9.62		
Chromium		56.4	2	.40	9.62		
Cobalt		17.6	2	.40	9.62		
Copper		16100	4	.81	9.62		
Lead		643	4	.81	9.62		
Molybdenum		16.2	2	.40	9.62		
Nickel		99.5	2	.40	9.62		
Selenium		ND	7	.21	9.62		
Silver		8.68	2	.40	9.62		
Thallium		ND	7	.21	9.62		
Vanadium		40.8	2	.40	9.62		
Zinc		6630	9	.62	9.62		

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	EPA 3050B	
	Method:	EPA 6010E	
	Units:	mg/kg	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 5 of 17	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-2-M	17-02-0769-5-A	02/07/17 10:00	Solid	ICP 7300	02/13/17	02/14/17 12:16	170213L02
Comment(s): - The reporting limit is eleva	ited resulting from ma	atrix interference	æ.				
Parameter		<u>Result</u>	<u>F</u>	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>ifiers</u>
Antimony		17.1	7	.28	9.71		
Arsenic		ND	7	.28	9.71		
Barium		681	4	.85	9.71		
Beryllium		ND	2	2.43	9.71		
Cadmium		12.5	4	.85	9.71		
Chromium		112	2	2.43	9.71		
Cobalt		25.0	2	2.43	9.71		
Copper		871	4	.85	9.71		
Lead		893	4	.85	9.71		
Molybdenum		35.1	2	2.43	9.71		
Nickel		158	2	2.43	9.71		
Selenium		ND	7	.28	9.71		
Silver		4.61	2	2.43	9.71		
Thallium		ND	7	.28	9.71		
Vanadium		19.7	2	2.43	9.71		
Zinc		11300	g).71	9.71		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 6 of 17

Analytical Report

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-3-M	17-02-0769-6-A	02/07/17 11:00	Solid	ICP 7300	02/13/17	02/14/17 12:17	170213L02
Comment(s): - The reporting limit is eleva	ated resulting from ma	atrix interference	Э.				
Parameter		<u>Result</u>	<u>RI</u>	=	DF	<u>Qualit</u>	fiers
Antimony		58.5	7.1	14	9.52		
Arsenic		ND	7.1	14	9.52		
Barium		845	4.7	76	9.52		
Beryllium		ND	2.3	38	9.52		
Cadmium		14.7	4.7	76	9.52		
Chromium		124	2.3	38	9.52		
Cobalt		24.5	2.3	38	9.52		
Copper		4280	4.7	76	9.52		
Lead		1580	4.7	76	9.52		
Molybdenum		29.9	2.3	38	9.52		
Nickel		147	2.3	38	9.52		
Selenium		ND	7.1	14	9.52		
Silver		6.12	2.3	38	9.52		
Thallium		ND	7.1	14	9.52		
Vanadium		18.6	2.3	38	9.52		
Zinc		11000	9.5	52	9.52		

Return to Contents

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 7 of 17

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-4-U	17-02-0769-7-A	02/07/17 12:30	Solid	ICP 7300	02/13/17	02/14/17 12:18	170213L02
Comment(s): - The repo	rting limit is elevated resulting from r	natrix interferen	ce.				
Parameter		<u>Result</u>	<u>R</u>	<u>:L</u>	DF	Qua	lifiers
Antimony		ND	7	.73	10.3		
Arsenic		ND	7	.73	10.3		
Barium		589	5	.15	10.3		
Beryllium		ND	2	.58	10.3		
Cadmium		21.0	5	.15	10.3		
Chromium		3030	2	.58	10.3		
Cobalt		35.7	2	.58	10.3		
Copper		37300	5	.15	10.3		
Lead		784	5	.15	10.3		
Molybdenum		66.6	2	.58	10.3		
Nickel		168	2	.58	10.3		
Selenium		10.2	7	.73	10.3		
Silver		4.11	2	.58	10.3		
Thallium		ND	7	.73	10.3		
Vanadium		ND	2	.58	10.3		
Zinc		7660	1	0.3	10.3		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004	Page 8 of 17	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-5-U	17-02-0769-8-A	02/07/17 13:30	Solid	ICP 7300	02/13/17	02/14/17 12:19	170213L02
Comment(s): - The rep	orting limit is elevated resulting from r	natrix interferen	ce.				
Parameter		<u>Result</u>	F	<u>:L</u>	DF	<u>Qua</u>	lifiers
Antimony		11.4	7	.39	9.85		
Arsenic		9.87	7	.39	9.85		
Barium		692	4	.93	9.85		
Beryllium		ND	2	.46	9.85		
Cadmium		17.3	4	.93	9.85		
Chromium		181	2	.46	9.85		
Cobalt		18.8	2	.46	9.85		
Copper		11800	4	.93	9.85		
Lead		603	4	.93	9.85		
Molybdenum		46.2	2	.46	9.85		
Nickel		118	2	.46	9.85		
Selenium		ND	7	.39	9.85		
Silver		4.36	2	.46	9.85		
Thallium		ND	7	.39	9.85		
Vanadium		8.86	2	.46	9.85		
Zinc		7300	9	.85	9.85		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 9 of 17

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-6-U	17-02-0769-9-A	02/07/17 14:30	Solid	ICP 7300	02/13/17	02/14/17 12:20	170213L02
Comment(s): - The reporting limit	is elevated resulting from r	natrix interferen	ce.				
Parameter		<u>Result</u>	<u>F</u>	<u> </u>	DF	<u>Qua</u>	lifiers
Antimony		18.8	7	.21	9.62		
Arsenic		ND	7	.21	9.62		
Barium		715	4	.81	9.62		
Beryllium		ND	2	.40	9.62		
Cadmium		21.1	4	.81	9.62		
Chromium		131	2	.40	9.62		
Cobalt		29.8	2	.40	9.62		
Copper		4230	4	.81	9.62		
Lead		723	4	.81	9.62		
Molybdenum		52.6	2	.40	9.62		
Nickel		155	2	.40	9.62		
Selenium		ND	7	.21	9.62		
Silver		7.43	2	.40	9.62		
Thallium		ND	7	.21	9.62		
Vanadium		11.0	2	.40	9.62		
Zinc		10600	9	.62	9.62		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 10 of 17

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-4-M	17-02-0769-10-A	02/07/17 12:30	Solid	ICP 7300	02/13/17	02/14/17 12:24	170213L02
Comment(s): - The reporting limit is eleve	ated resulting from m	atrix interferend	ce.	·			
Parameter		<u>Result</u>	<u>F</u>	<u>RL</u>	DF	Qual	lifiers
Antimony		27.7	7	.35	9.80		
Arsenic		ND	7	7.35	9.80		
Barium		2590	2	1.90	9.80		
Beryllium		ND	2	2.45	9.80		
Cadmium		8.79	2	1.90	9.80		
Chromium		75.3	2	2.45	9.80		
Cobalt		15.0	2	2.45	9.80		
Copper		926	2	.90	9.80		
Lead		506	2	1.90	9.80		
Molybdenum		24.1	2	2.45	9.80		
Nickel		327	2	2.45	9.80		
Selenium		ND	7	7.35	9.80		
Silver		3.94	2	2.45	9.80		
Thallium		ND	7	7.35	9.80		
Vanadium		25.3	2	2.45	9.80		
Zinc		5920	ę	9.80	9.80		

Return to Contents

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 11 of 17

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-5-M		17-02-0769-11-A	02/07/17 13:30	Solid	ICP 7300	02/13/17	02/14/17 12:25	170213L02
Comment(s):	- The reporting limit is eleva	ated resulting from ma	atrix interference	ə.				
Parameter			<u>Result</u>	<u>F</u>	<u> </u>	<u>DF</u>	<u>Qualif</u>	fiers
Antimony			ND	7	.39	9.85		
Arsenic			13.0	7	.39	9.85		
Barium			625	4	.93	9.85		
Beryllium			ND	2	.46	9.85		
Cadmium			9.82	4	.93	9.85		
Chromium			71.3	2	.46	9.85		
Cobalt			19.9	2	.46	9.85		
Copper			71400	4	.93	9.85		
Lead			687	4	.93	9.85		
Molybdenum			24.7	2	.46	9.85		
Nickel			120	2	.46	9.85		
Selenium			ND	7	.39	9.85		
Silver			7.34	2	.46	9.85		
Thallium			ND	7	.39	9.85		
Vanadium			25.7	2	.46	9.85		
Zinc			8070	9	.85	9.85		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 12 of 17

Client Sample Nu	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-6-M		17-02-0769-12-A	02/07/17 14:30	Solid	ICP 7300	02/13/17	02/14/17 12:26	170213L02
Comment(s):	- The reporting limit is eleva	ited resulting from ma	atrix interference	e.				
Parameter			<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qualit</u>	<u>iers</u>
Antimony			9.86	7.	.28	9.71		
Arsenic			ND	7.	.28	9.71		
Barium			835	4.	.85	9.71		
Beryllium			ND	2.	.43	9.71		
Cadmium			8.52	4.	.85	9.71		
Chromium			169	2.	.43	9.71		
Cobalt			22.6	2.	.43	9.71		
Copper			4010	4.	.85	9.71		
Lead			691	4.	.85	9.71		
Molybdenum			36.2	2.	.43	9.71		
Nickel			129	2.	.43	9.71		
Selenium			ND	7.	.28	9.71		
Silver			4.48	2.	.43	9.71		
Thallium			ND	7.	.28	9.71		
Vanadium			25.0	2.	.43	9.71		
Zinc			8920	9.	.71	9.71		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 13 of 17

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-7-U	17-02-0769-13-A	02/07/17 15:30	Solid	ICP 7300	02/13/17	02/14/17 12:27	170213L02
Comment(s): - The reporting limit is eleva	ated resulting from ma	atrix interferenc	e.				
Parameter		<u>Result</u>	<u>F</u>	<u> </u>	DF	<u>Qual</u>	ifiers
Antimony		22.5	7	.21	9.62		
Arsenic		ND	7	.21	9.62		
Barium		1070	4	.81	9.62		
Beryllium		ND	2	.40	9.62		
Cadmium		12.3	4	.81	9.62		
Chromium		97.4	2	.40	9.62		
Cobalt		38.7	2	.40	9.62		
Copper		597	4	.81	9.62		
Lead		902	4	.81	9.62		
Molybdenum		31.2	2	.40	9.62		
Nickel		182	2	.40	9.62		
Selenium		ND	7	.21	9.62		
Silver		6.63	2	.40	9.62		
Thallium		ND	7	.21	9.62		
Vanadium		11.7	2	40	9.62		
Zinc		9850	9	.62	9.62		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 14 of 17

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-8-U		17-02-0769-14-A	02/07/17 16:30	Solid	ICP 7300	02/13/17	02/14/17 12:28	170213L02
Comment(s):	- The reporting limit is eleve	ated resulting from m	atrix interferend	ce.				
Parameter			<u>Result</u>	<u>F</u>	<u> </u>	DF	Qua	<u>lifiers</u>
Antimony			13.6	7	.39	9.85		
Arsenic			ND	7	.39	9.85		
Barium			708	4	.93	9.85		
Beryllium			ND	2	.46	9.85		
Cadmium			10.6	4	.93	9.85		
Chromium			87.3	2	46	9.85		
Cobalt			18.3	2	46	9.85		
Copper			2180	4	.93	9.85		
Lead			832	4	.93	9.85		
Molybdenum			26.7	2	46	9.85		
Nickel			143	2	46	9.85		
Selenium			ND	7	.39	9.85		
Silver			4.92	2	46	9.85		
Thallium			ND	7	.39	9.85		
Vanadium			14.5	2	46	9.85		
Zinc			7670	9	.85	9.85		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 15 of 17

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-7-M	17-02-0769-15-A	02/07/17 15:30	Solid	ICP 7300	02/13/17	02/14/17 12:29	170213L02
Comment(s): - The reporting limit is eleva	ated resulting from ma	atrix interferenc	e.				
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	<u>Qual</u>	ifiers
Antimony		ND	-	7.28	9.71		
Arsenic		ND	-	7.28	9.71		
Barium		2120	4	1.85	9.71		
Beryllium		ND	:	2.43	9.71		
Cadmium		6.70	4	1.85	9.71		
Chromium		63.1	2	2.43	9.71		
Cobalt		14.4	2	2.43	9.71		
Copper		66000	4	1.85	9.71		
Lead		602	4	1.85	9.71		
Molybdenum		23.3	2	2.43	9.71		
Nickel		90.6	:	2.43	9.71		
Selenium		ND	-	7.28	9.71		
Silver		5.85	:	2.43	9.71		
Thallium		ND	-	7.28	9.71		
Vanadium		13.6	:	2.43	9.71		
Zinc		6490	ę	9.71	9.71		

Return to Contents

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 16 of 17

Analytical Report

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-8-M	17-02-0769-16-A	02/07/17 16:30	Solid	ICP 7300	02/13/17	02/14/17 12:29	170213L02
Comment(s): - The reporting limit is eleva	ated resulting from ma	atrix interferenc	e.				
Parameter		<u>Result</u>	<u>R</u>	<u>L</u>	DF	<u>Qualif</u>	fiers
Antimony		11.9	7.	25	9.66		
Arsenic		ND	7.	25	9.66		
Barium		673	4.	83	9.66		
Beryllium		ND	2.	42	9.66		
Cadmium		9.16	4.	83	9.66		
Chromium		89.2	2.	42	9.66		
Cobalt		18.5	2.	42	9.66		
Copper		1830	4.	83	9.66		
Lead		625	4.	83	9.66		
Molybdenum		23.7	2.	42	9.66		
Nickel		116	2.	42	9.66		
Selenium		ND	7.	25	9.66		
Silver		3.65	2.	42	9.66		
Thallium		ND	7.	25	9.66		
Vanadium		25.9	2.	42	9.66		
Zinc		7750	9.	66	9.66		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	mg/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 17 of 17

roject: ISRI MSR Treatability Study / 0102.001.004

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-24335	N/A	Solid	ICP 7300	02/13/17	02/14/17 10:15	170213L02
Parameter		<u>Result</u>	Ē	RL	DF	Qual	ifiers
Antimony		ND	().721	0.962		
Arsenic		ND	().721	0.962		
Barium		ND	().481	0.962		
Beryllium		ND	(0.240	0.962		
Cadmium		ND	(0.481	0.962		
Chromium		ND	(0.240	0.962		
Cobalt		ND	(0.240	0.962		
Copper		ND	(0.481	0.962		
Lead		ND	(0.481	0.962		
Molybdenum		ND	(0.240	0.962		
Nickel		ND	(0.240	0.962		
Selenium		ND	(0.721	0.962		
Silver		ND	(0.240	0.962		
Thallium		ND	(0.721	0.962		
Vanadium		ND	(0.240	0.962		
Zinc		ND	(0.962	0.962		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 17

Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID
SSP-4M-1-U	17-02-0769-1-A	02/07/17 09:00	Solid	ICP 7300	02/10/17	02/14/17 11:18	170213LA11
Comment(s): - The analysis was per	formed on a STLC extra	ct of the sample	Э.				
Parameter		<u>Result</u>	<u>F</u>	<u>RL</u>	DF	Qua	lifiers
Antimony		0.476	C).150	1.00		
Arsenic		ND	C	0.150	1.00		
Barium		3.83	C).100	1.00		
Beryllium		ND	C	0.100	1.00		
Cadmium		0.507	C	0.100	1.00		
Chromium		2.27	C).100	1.00		
Cobalt		0.839	C).100	1.00		
Copper		0.158	C).100	1.00		
Lead		21.9	C).100	1.00		
Molybdenum		0.606	C).100	1.00		
Nickel		3.80	C	0.100	1.00		
Selenium		ND	C).150	1.00		
Silver		ND	C	0.0500	1.00		
Thallium		ND	C	0.150	1.00		
Vanadium		0.195	C	0.100	1.00		
Zinc		572	1	.00	10.0		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 17

Lab Sample Number **Client Sample Number** Matrix Date Prepared Date/Time QC Batch ID Date/Time Instrument Collected Analyzed 02/14/17 11:21 02/07/17 10:00 SSP-4M-2-U **ICP 7300** 02/10/17 170213LA11 17-02-0769-2-A Solid Comment(s): - The analysis was performed on a STLC extract of the sample. <u>DF</u> Parameter **Result** RL **Qualifiers** 0.150 0.500 1.00 Antimony Arsenic ND 1.00 0.150 Barium 4.21 0.100 1.00 Beryllium ND 0.100 1.00 0.741 Cadmium 0.100 1.00 Chromium 1.96 0.100 1.00 Cobalt 1.00 1.02 0.100 Copper ND 0.100 1.00 Lead 38.8 0.100 1.00 Molybdenum 0.661 0.100 1.00 Nickel 4.37 0.100 1.00 Selenium ND 0.150 1.00 ND Silver 0.0500 1.00 Thallium ND 0.150 1.00 Vanadium 0.100 0.234 1.00 SSP-4M-2-U 17-02-0769-2-A 02/07/17 Solid **ICP 7300** 02/10/17 02/14/17 170213LA11

		10:00		1	3:12
Comment(s):	- The analysis was performed on a STLC extract of	of the sample.			
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Zinc		752	1.00	10.0	

Zinc

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.004	L	Page 3 of 17

QC Batch ID Date/Time Matrix Date Prepared Date/Time **Client Sample Number** Lab Sample Instrument Number Collected Analyzed 02/07/17 11:00 02/14/17 11:22 SSP-4M-3-U **ICP 7300** 02/10/17 170213LA11 17-02-0769-3-A Solid Comment(s): - The analysis was performed on a STLC extract of the sample. <u>DF</u> RL **Qualifiers** Parameter Result 0.683 0.150 1.00 Antimony ND Arsenic 0.150 1.00 Barium 4.60 0.100 1.00 Beryllium ND 0.100 1.00 Cadmium 0.753 0.100 1.00 Chromium 2.72 0.100 1.00 Cobalt 1.00 1.14 0.100 Copper 0.292 0.100 1.00 Lead 43.4 0.100 1.00 Molybdenum 0.852 0.100 1.00 Nickel 4.84 0.100 1.00 Selenium ND 0.150 1.00 Silver ND 0.0500 1.00 Thallium ND 0.150 1.00 Vanadium 0.259 0.100 1.00 02/07/17 11:00 02/14/17 13:13 SSP-4M-3-U 17-02-0769-3-A Solid **ICP 7300** 02/10/17 170213LA11 Comment(s): - The analysis was performed on a STLC extract of the sample. Parameter Result <u>RL</u> <u>DF</u> Qualifiers

762

1.00

10.0

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.004		Page 4 of 17

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-1-M	17-02-0769-4-4	02/07/17 09:00	Solid	ICP 7300	02/10/17	02/14/17 11:23	170213LA11
Comment(s): - The an	alysis was performed on a STLC ex	tract of the sample	е.	·			
Parameter		<u>Result</u>	<u>F</u>	<u> </u>	DF	Qua	lifiers
Antimony		ND	0	0.150	1.00		
Arsenic		ND	0	.150	1.00		
Barium		1.65	0	0.100	1.00		
Beryllium		ND	0	0.100	1.00		
Cadmium		ND	0	0.100	1.00		
Chromium		0.592	0	0.100	1.00		
Cobalt		ND	0	0.100	1.00		
Copper		2.20	0	0.100	1.00		
Lead		0.591	0	0.100	1.00		
Molybdenum		0.176	0	0.100	1.00		
Nickel		0.420	0	0.100	1.00		
Selenium		ND	0	0.150	1.00		
Silver		ND	0	0.0500	1.00		
Thallium		ND	0	0.150	1.00		
Vanadium		1.52	0	0.100	1.00		
Zinc		3.61	0	0.100	1.00		

Parameter

Zinc

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.004		Page 5 of 17

Lab Sample Date/Time Matrix Date Prepared Date/Time QC Batch ID **Client Sample Number** Instrument Number Collected Analyzed 02/14/17 11:24 02/07/17 10:00 SSP-4-2-M **ICP 7300** 02/10/17 170213LA11 17-02-0769-5-A Solid Comment(s): - The analysis was performed on a STLC extract of the sample. <u>DF</u> **Result** RL **Qualifiers** Parameter 0.626 0.150 1.00 Antimony ND Arsenic 0.150 1.00 Barium 6.79 0.100 1.00 Beryllium ND 0.100 1.00 Cadmium 0.377 0.100 1.00 Chromium 1.82 0.100 1.00 Cobalt 1.00 0.629 0.100 Copper ND 0.100 1.00 Lead 18.3 0.100 1.00 Molybdenum 0.497 0.100 1.00 Nickel 2.82 0.100 1.00 Selenium ND 0.150 1.00 Silver ND 0.0500 1.00 Thallium ND 0.150 1.00 Vanadium 1.15 0.100 1.00 02/07/17 10:00 02/14/17 13:14 SSP-4-2-M 17-02-0769-5-A Solid **ICP 7300** 02/10/17 170213LA11 Comment(s): - The analysis was performed on a STLC extract of the sample.

Result

582

<u>RL</u>

1.00

<u>DF</u>

10.0

Qualifiers

Zinc

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 6 of 17	

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-3-M		17-02-0769-6-A	02/07/17 11:00	Solid	ICP 7300	02/10/17	02/14/17 11:25	170213LA11
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the sample	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Antimony			0.496		0.150	1.00		
Arsenic			ND		0.150	1.00		
Barium			5.50		0.100	1.00		
Beryllium			ND		0.100	1.00		
Cadmium			0.523		0.100	1.00		
Chromium			2.52		0.100	1.00		
Cobalt			0.821		0.100	1.00		
Copper			ND		0.100	1.00		
Lead			17.4		0.100	1.00		
Molybdenum			0.719		0.100	1.00		
Nickel			3.96		0.100	1.00		
Selenium			ND		0.150	1.00		
Silver			ND		0.0500	1.00		
Thallium			ND		0.150	1.00		
Vanadium			0.562		0.100	1.00		
SSP-4-3-M		17-02-0769-6-A	02/07/17 11:00	Solid	ICP 7300	02/10/17	02/14/17 13:15	170213LA11
Comment(s):	- The analysis was perforr	med on a STLC extra	ct of the sample	Э.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>

775

1.00

10.0

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004	Page 7 of 17		

Analytical Report

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-4-U		17-02-0769-7-A	02/07/17 12:30	Solid	ICP 7300	02/10/17	02/14/17 11:26	170213LA11
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the sample	Э.			·	
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Antimony			0.717		0.150	1.00		
Arsenic			ND		0.150	1.00		
Barium			4.73		0.100	1.00		
Beryllium			ND		0.100	1.00		
Cadmium			0.125		0.100	1.00		
Chromium			3.61		0.100	1.00		
Cobalt			1.56		0.100	1.00		
Copper			ND		0.100	1.00		
Lead			38.6		0.100	1.00		
Molybdenum			1.04		0.100	1.00		
Nickel			7.86		0.100	1.00		
Selenium			ND		0.150	1.00		
Silver			ND		0.0500	1.00		
Thallium			ND		0.150	1.00		
Vanadium			0.326		0.100	1.00		
SSP-4M-4-U		17-02-0769-7-A	02/07/17 12:30	Solid	ICP 7300	02/10/17	02/14/17 13:16	170213LA11
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the sample	Э.				
Parameter			Result		RI	DF	Qua	alifiers

750

1.00

10.0

Zinc

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 8 of 17	

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-5-U		17-02-0769-8-A	02/07/17 13:30	Solid	ICP 7300	02/10/17	02/14/17 11:27	170213LA11
Comment(s):	- The analysis was perform	ned on a STLC extract	t of the sample.					
Parameter A Parameter			Result		<u>RL</u>	DF	Qua	lifiers
Antimony			1.94		0.150	1.00		
Arsenic			ND		0.150	1.00		
Barium			4.68		0.100	1.00		
Beryllium			ND		0.100	1.00		
Cadmium			1.77		0.100	1.00		
Chromium			2.28		0.100	1.00		
Cobalt			0.898		0.100	1.00		
Copper			ND		0.100	1.00		
Lead			143		0.100	1.00		
Molybdenum			0.727		0.100	1.00		
Nickel			3.57		0.100	1.00		
Selenium			ND		0.150	1.00		
Silver			ND		0.0500	1.00		
Thallium			ND		0.150	1.00		
Vanadium			0.219		0.100	1.00		
SSP-4M-5-U		17-02-0769-8-A	02/07/17 13:30	Solid	ICP 7300	02/10/17	02/14/17 13:18	170213LA11

		13.30			13.10	
Comment(s):	- The analysis was performed on a STLC e	extract of the sample.				
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Zinc		585	1.00	10.0		

Zinc

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 9 of 17	

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-6-U		17-02-0769-9-A	02/07/17 14:30	Solid	ICP 7300	02/10/17	02/14/17 11:31	170213LA11
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample.					
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	<u>lifiers</u>
Antimony			0.910		0.150	1.00		
Arsenic			ND		0.150	1.00		
Barium			4.38		0.100	1.00		
Beryllium			ND		0.100	1.00		
Cadmium			0.486		0.100	1.00		
Chromium			2.94		0.100	1.00		
Cobalt			0.832		0.100	1.00		
Copper			ND		0.100	1.00		
Lead			36.0		0.100	1.00		
Molybdenum			1.16		0.100	1.00		
Nickel			4.88		0.100	1.00		
Selenium			ND		0.150	1.00		
Silver			ND		0.0500	1.00		
Thallium			ND		0.150	1.00		
Vanadium			0.188		0.100	1.00		
SSP-4M-6-U		17-02-0769-9-A	02/07/17 14:30	Solid	ICP 7300	02/10/17	02/14/17 13:19	170213LA11
Comment(s):	- The analysis was perform	ed on a STLC extrac	t of the sample.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>

590

1.00

10.0

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.00)4	Page 10 of 17

Analytical Report

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-4-M	17-02-0769-10-A	02/07/17 12:30	Solid	ICP 7300	02/10/17	02/14/17 11:32	170213LA11
Comment(s): - The analysis was perform	ed on a STLC extract	t of the sample.					
Parameter		<u>Result</u>	<u>F</u>	<u> </u>	<u>DF</u>	<u>Qualif</u>	fiers
Antimony		0.266	C	0.150	1.00		
Arsenic		ND	C	0.150	1.00		
Barium		5.68	C	0.100	1.00		
Beryllium		ND	C	0.100	1.00		
Cadmium		0.209	C	0.100	1.00		
Chromium		5.00	C	0.100	1.00		
Cobalt		0.492	C	0.100	1.00		
Copper		ND	C	0.100	1.00		
Lead		11.1	C	0.100	1.00		
Molybdenum		0.448	C	0.100	1.00		
Nickel		2.31	C	0.100	1.00		
Selenium		ND	C	0.150	1.00		
Silver		ND	C	0.0500	1.00		
Thallium		ND	C	0.150	1.00		
Vanadium		0.800	C	0.100	1.00		
Zinc		311	C	0.100	1.00		

Zinc

Date Received:	02/09/17	
Work Order:	17-02-0769	
Preparation:	T22.11.5. All	
Method:	EPA 6010B	
Units:	mg/L	
	Page 11 of 17	
	Date Received: Work Order: Preparation: Method: Units:	

Analytical Report

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-5-M		17-02-0769-11-A	02/07/17 13:30	Solid	ICP 7300	02/10/17	02/14/17 11:33	170213LA11
Comment(s):	- The analysis was perform	ned on a STLC extrac	t of the sample			·		
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	lifiers
Antimony			0.313		0.150	1.00		
Arsenic			ND		0.150	1.00		
Barium			5.35		0.100	1.00		
Beryllium			ND		0.100	1.00		
Cadmium			ND		0.100	1.00		
Chromium			1.45		0.100	1.00		
Cobalt			0.365		0.100	1.00		
Copper			ND		0.100	1.00		
Lead			2.34		0.100	1.00		
Molybdenum			0.394		0.100	1.00		
Nickel			2.02		0.100	1.00		
Selenium			ND		0.150	1.00		
Silver			ND		0.0500	1.00		
Thallium			ND		0.150	1.00		
Vanadium			1.47		0.100	1.00		
SSP-4-5-M		17-02-0769-11-A	02/07/17 13:30	Solid	ICP 7300	02/10/17	02/14/17 13:20	170213LA11
Comment(s):	- The analysis was perform	ned on a STLC extrac	t of the sample					
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qualifiers</u>	

565

1.00

10.0

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004	Page 12 of 17		

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-6-M	17-02-0769-12-A	02/07/17 14:30	Solid	ICP 7300	02/10/17	02/14/17 11:34	170213LA11
Comment(s): - The analysis was perform	ned on a STLC extra	ct of the sample).				
Parameter		<u>Result</u>		RL	DF	<u>Qua</u>	lifiers
Antimony		0.515		0.150	1.00		
Arsenic		ND		0.150	1.00		
Barium		6.46		0.100	1.00		
Beryllium		ND		0.100	1.00		
Cadmium		0.285		0.100	1.00		
Chromium		3.15		0.100	1.00		
Cobalt		0.655		0.100	1.00		
Copper		0.292		0.100	1.00		
Lead		27.0		0.100	1.00		
Molybdenum		0.741		0.100	1.00		
Nickel		3.52		0.100	1.00		
Selenium		ND		0.150	1.00		
Silver		ND		0.0500	1.00		
Thallium		ND		0.150	1.00		
Vanadium		1.26		0.100	1.00		
Zinc		414		0.100	1.00		

Parameter

Zinc

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004	Page 13 of 17		

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
SSP-4M-7-U		17-02-0769-13-A	02/07/17 15:30	Solid	ICP 7300	02/10/17	02/14/17 11:35	170213LA11		
Comment(s):	- The analysis was performed on a STLC extract of the sample.									
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Qua</u>	lifiers		
Antimony			0.721		0.150	1.00				
Arsenic			ND		0.150	1.00				
Barium			4.87		0.100	1.00				
Beryllium			ND		0.100	1.00				
Cadmium			ND		0.100	1.00				
Chromium			3.05		0.100	1.00				
Cobalt			1.50		0.100	1.00				
Copper			ND		0.100	1.00				
Lead			28.8		0.100	1.00				
Molybdenum			1.09		0.100	1.00				
Nickel			5.80		0.100	1.00				
Selenium			ND		0.150	1.00				
Silver			ND		0.0500	1.00				
Thallium			ND		0.150	1.00				
Vanadium			0.247		0.100	1.00				
SSP-4M-7-U		17-02-0769-13-A	02/07/17 15:30	Solid	ICP 7300	02/10/17	02/14/17 13:21	170213LA11		
Comment(s):	- The analysis was perform	ned on a STLC extrac	t of the sample							

<u>Result</u>

683

<u>RL</u>

1.00

<u>DF</u>

10.0

Qualifiers

Date Received:	02/09/17	
Work Order:	17-02-0769	
Preparation:	T22.11.5. All	
Method:	EPA 6010B	
Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004		
	Date Received: Work Order: Preparation: Method: Units:	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4M-8-U	17-02-0769-14-A	02/07/17 16:30	Solid	ICP 7300	02/10/17	02/14/17 11:36	170213LA11
Comment(s): - The analysis was perform	ed on a STLC extrac	t of the sample.					
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qual	lifiers
Antimony		0.700		0.150	1.00		
Arsenic		ND		0.150	1.00		
Barium		3.94		0.100	1.00		
Beryllium		ND		0.100	1.00		
Cadmium		0.184		0.100	1.00		
Chromium		1.78		0.100	1.00		
Cobalt		0.865		0.100	1.00		
Copper		ND		0.100	1.00		
Lead		33.1		0.100	1.00		
Molybdenum		0.626		0.100	1.00		
Nickel		4.23		0.100	1.00		
Selenium		ND		0.150	1.00		
Silver		ND		0.0500	1.00		
Thallium		ND		0.150	1.00		
Vanadium		0.211		0.100	1.00		
Zinc		464		0.100	1.00		

Return to Contents

Zinc

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004	Page 15 of 17		

QC Batch ID Date/Time Matrix Date Prepared Date/Time **Client Sample Number** Lab Sample Instrument Number Collected Analyzed 02/07/17 15:30 02/14/17 11:37 SSP-4-7-M **ICP 7300** 02/10/17 170213LA11 17-02-0769-15-A Solid Comment(s): - The analysis was performed on a STLC extract of the sample. <u>DF</u> RL **Qualifiers** Parameter Result 0.682 0.150 1.00 Antimony 0.247 Arsenic 0.150 1.00 Barium 6.10 0.100 1.00 Beryllium ND 0.100 1.00 Cadmium ND 0.100 1.00 Chromium 2.00 0.100 1.00 Cobalt 0.745 1.00 0.100 Copper ND 0.100 1.00 Lead 27.2 0.100 1.00 Molybdenum 0.725 0.100 1.00 Nickel 3.90 0.100 1.00 Selenium ND 0.150 1.00 Silver ND 0.0500 1.00 Thallium ND 0.150 1.00 Vanadium 0.942 0.100 1.00 02/07/17 15:30 02/14/17 13:22 SSP-4-7-M 17-02-0769-15-A Solid **ICP 7300** 02/10/17 170213LA11 Comment(s): - The analysis was performed on a STLC extract of the sample. Parameter Result <u>RL</u> <u>DF</u> Qualifiers

582

1.00

10.0

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	T22.11.5. All	
	Method:	EPA 6010B	
	Units:	mg/L	
Project: ISRI MSR Treatability Study / 0102.001.004	Page 16 of 17		

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-8-M	17-02-0769-16-A	02/07/17 16:30	Solid	ICP 7300	02/10/17	02/14/17 11:38	170213LA11
Comment(s): - The analysis was perform	ed on a STLC extrac	t of the sample.					
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Qual</u>	ifiers
Antimony		1.02		0.150	1.00		
Arsenic		ND		0.150	1.00		
Barium		6.01		0.100	1.00		
Beryllium		ND		0.100	1.00		
Cadmium		0.413		0.100	1.00		
Chromium		1.89		0.100	1.00		
Cobalt		0.698		0.100	1.00		
Copper		ND		0.100	1.00		
Lead		35.6		0.100	1.00		
Molybdenum		0.555		0.100	1.00		
Nickel		3.28		0.100	1.00		
Selenium		ND		0.150	1.00		
Silver		ND		0.0500	1.00		
Thallium		ND		0.150	1.00		
Vanadium		1.13		0.100	1.00		
Zinc		435		0.100	1.00		

Return to Contents

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.004	Page 17 of 17	

Project: ISRI MSR Treatability Study / 0102.001.004

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-05-006-8927	N/A	Aqueous	ICP 7300	02/10/17	02/14/17 11:14	170213LA11
Parameter		<u>Result</u>	RL		DF	Qua	lifiers
Antimony		ND	0.1	50	1.00		
Arsenic		ND	0.1	50	1.00		
Barium		ND	0.1	00	1.00		
Beryllium		ND	0.1	00	1.00		
Cadmium		ND	0.1	00	1.00		
Chromium		ND	0.1	00	1.00		
Cobalt		ND	0.1	00	1.00		
Copper		ND	0.1	00	1.00		
Lead		ND	0.1	00	1.00		
Molybdenum		ND	0.1	00	1.00		
Nickel		ND	0.1	00	1.00		
Selenium		ND	0.1	50	1.00		
Silver		ND	0.0	500	1.00		
Thallium		ND	0.1	50	1.00		
Vanadium		ND	0.1	00	1.00		
Zinc		ND	0.1	00	1.00		

Terraphase Engineering, Inc.				Date Re	02/09/17				
1404 Franklin Street, Suite 600				Work O		17-02-0769			
Oakland, CA 94612-3215				Prepara	tion:		T22.11.5. All		
			I	Method:				EPA 7470A	
			I	Units:				mg/L	
Project: ISRI	MSR Treatability Study	y / 0102.001.004	Ļ				Pa	ge 1 of 3	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SSP-4M-1-U		17-02-0769-1-A	02/07/17 09:00	Solid	Mercury 07	02/10/17	02/17/17 11:54	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample).					
Parameter			Result		<u>RL</u>	<u>DF</u>	<u>Qua</u>	lifiers	
Mercury			ND		0.00500	1.00			
SSP-4M-2-U		17-02-0769-2-A	02/07/17 10:00	Solid	Mercury 07	02/10/17	02/17/17 12:01	170216LA3	
Comment(s):	- The analysis was performed on a STLC extract of the sample.								
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>	
Mercury			ND		0.00500	1.00			
SSP-4M-3-U		17-02-0769-3-A	02/07/17 11:00	Solid	Mercury 07	02/10/17	02/17/17 12:03	170216LA3	
Comment(s):	- The analysis was performed on a STLC extract of the sample.								
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qualifiers</u>		
Mercury			ND		0.00500	1.00			
SSP-4-1-M		17-02-0769-4-A	02/07/17 09:00	Solid	Mercury 07	02/10/17	02/17/17 12:06	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	9.					
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	lifiers	
Mercury			ND		0.00500	1.00			
SSP-4-2-M		17-02-0769-5-A	02/07/17 10:00	Solid	Mercury 07	02/10/17	02/17/17 12:08	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample).					
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	ifiers	
Mercury			ND		0.00500	1.00			
SSP-4-3-M		17-02-0769-6-A	02/07/17 11:00	Solid	Mercury 07	02/10/17	02/17/17 12:10	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample).					
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	lifiers	
Mercury			ND		0.00500	1.00			

Terraphase Engineering, Inc.				Date Re	02/09/17				
1404 Franklin Street, Suite 600				Work O		17-02-0769			
Oakland, CA 94612-3215				Prepara	tion:		T22.11.5. All		
				Method:				EPA 7470A	
				Units:				mg/L	
Project: ISRI	MSR Treatability Study	y / 0102.001.004					Pa	ge 2 of 3	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SSP-4M-4-U		17-02-0769-7-A	02/07/17 12:30	Solid	Mercury 07	02/10/17	02/17/17 12:17	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.					
Parameter			Result		<u>RL</u>	<u>DF</u>	Qua	Qualifiers	
Mercury			ND		0.00500	1.00			
SSP-4M-5-U		17-02-0769-8-A	02/07/17 13:30	Solid	Mercury 07	02/10/17	02/17/17 12:19	170216LA3	
Comment(s):	- The analysis was performed on a STLC extract of the sample.								
Parameter			Result		<u>RL</u>	DF	<u>Qualifiers</u>		
Mercury			ND		0.00500	1.00			
SSP-4M-6-U		17-02-0769-9-A	02/07/17 14:30	Solid	Mercury 07	02/10/17	02/17/17 12:21	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.					
Parameter			Result		<u>RL</u>	DF	<u>Qualifiers</u>		
Mercury			ND		0.00500	1.00			
SSP-4-4-M		17-02-0769-10-A	02/07/17 12:30	Solid	Mercury 07	02/10/17	02/17/17 12:24	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.					
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	lifiers	
Mercury			ND		0.00500	1.00			
SSP-4-5-M		17-02-0769-11-A	02/07/17 13:30	Solid	Mercury 07	02/10/17	02/17/17 12:26	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.					
Parameter			Result		<u>RL</u>	DF	Qua	lifiers	
Mercury			ND		0.00500	1.00			
SSP-4-6-M		17-02-0769-12-A	02/07/17 14:30	Solid	Mercury 07	02/10/17	02/17/17 12:28	170216LA3	
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sample	э.					
Parameter			Result		<u>RL</u>	DF	Qua	lifiers	
Mercury			ND		0.00500	1.00			

Terraphase E	Engineering, Inc.			Date Re	ceived:			02/09/17			
1404 Franklin Street, Suite 600				Work Or	der:		17-02-0769				
Oakland, CA 94612-3215				Preparat	tion:		T22.11.5. All				
				Method:				EPA 7470A			
				Units:				mg/L			
Project: ISRI	MSR Treatability Study				Pa	ge 3 of 3					
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
SSP-4M-7-U		17-02-0769-13-A	02/07/17 15:30	Solid	Mercury 07	02/10/17	02/17/17 12:31	170216LA3			
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sampl	e.							
Parameter			<u>Result</u>	<u>RL</u>		DF	<u>Qualifiers</u>				
Mercury			ND		0.00500	1.00					
SSP-4M-8-U		17-02-0769-14-A	02/07/17 16:30	Solid	Mercury 07	02/10/17	02/17/17 12:33	170216LA3			
Comment(s):	(s): - The analysis was performed on a STLC extract of the sample.										
Parameter			Result		<u>RL</u>	DF	<u>Qua</u>	lifiers			
Mercury			ND		0.00500	1.00					
SSP-4-7-M		17-02-0769-15-A	02/07/17 15:30	Solid	Mercury 07	02/10/17	02/17/17 12:37	170216LA3			
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sampl	e.							
Parameter			<u>Result</u>		<u>RL</u>	DF	<u>Qua</u>	lifiers			
Mercury			ND		0.00500	1.00					
SSP-4-8-M		17-02-0769-16-A	02/07/17 16:30	Solid	Mercury 07	02/10/17	02/17/17 12:40	170216LA3			
Comment(s):	- The analysis was perform	ed on a STLC extrac	ct of the sampl	e.							
Parameter			Result		<u>RL</u>	DF	<u>Qua</u>	lifiers			
Mercury			ND		0.00500	1.00					
Method Blank		099-04-004-850	N/A	Aqueo	us Mercury 07	02/10/17	02/17/17 11:50	170216LA3			
Parameter			Result		RL	DF	Qua	lifiers			
Mercury			ND		0.00500	1.00					

Terraphase Engineering Inc			Date Re	ceived:			02/09/17	
1404 Franklin Street, Suite 600			Work Order: 17.02.076					
			Dropara	tion:	FPA 7/71A Total			
Oakianu, CA 94612-3213			Method:					
			Unito:					
Drainate ICDI MCD Transtability Study	. / 0400 004 004		Units.			De	mg/kg	
Project: ISRI MSR Treatability Study	//0102.001.004					Pa	ge 1 of 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SSP-4M-1-U	17-02-0769-1-A	02/07/17 09:00	Solid	Mercury 07	02/15/17	02/15/17 16:46	170215L01	
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	lifiers	
Mercury		2.20		0.806	10.0			
SSP-4M-2-U	17-02-0769-2-A	02/07/17 10:00	Solid	Mercury 07	02/15/17	02/15/17 13:16	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		1.71		0.0820	1.00			
SSP-4M-3-U	17-02-0769-3-A	02/07/17 11:00	Solid	Mercury 07	02/15/17	02/15/17 13:19	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		1.03		0.0806	1.00			
SSP-4-1-M	17-02-0769-4-A	02/07/17 09:00	Solid	Mercury 07	02/15/17	02/16/17 11:38	170215L01	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>	
Mercury		6.14		0.806	10.0			
SSP-4-2-M	17-02-0769-5-A	02/07/17 10:00	Solid	Mercury 07	02/15/17	02/15/17 13:23	170215L01	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers	
Mercury		0.658		0.0847	1.00			
SSP-4-3-M	17-02-0769-6-A	02/07/17 11:00	Solid	Mercury 07	02/15/17	02/15/17 16:53	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		3.00		0.806	10.0			
SSP-4M-4-U	17-02-0769-7-A	02/07/17 12:30	Solid	Mercury 07	02/15/17	02/15/17 13:33	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		0.162		0.0806	1.00			
SSP-4M-5-U	17-02-0769-8-A	02/07/17 13:30	Solid	Mercury 07	02/15/17	02/15/17 13:35	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		1.73		0.0820	1.00			

Analytical Report

Terraphase Engineering Inc			Date Re	ceived:			02/09/17	
1404 Franklin Stroot Suite 600			Work Or	der:	17-02-0760			
Ockland CA 04612 2215			Prenara	tion:	EDA 7/71A Total			
Carland, CA 94012-3215			Mothod:					
			Methou.					
Designet ICDI MOD Tes stability Otya	. / 0400 004 004		Units.			D -	тту/ку	
Project: ISRI MSR Treatability Study	7/0102.001.004					Pa	ge 2 of 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SSP-4M-6-U	17-02-0769-9-A	02/07/17 14:30	Solid	Mercury 07	02/15/17	02/15/17 13:37	170215L01	
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers	
Mercury		1.45		0.0794	1.00			
SSP-4-4-M	17-02-0769-10-A	02/07/17 12:30	Solid	Mercury 07	02/15/17	02/15/17 13:39	170215L01	
Parameter		<u>Result</u>	-	RL	DF	Qua	lifiers	
Mercury		1.28		0.0806	1.00			
SSP-4-5-M	17-02-0769-11-A	02/07/17 13:30	Solid	Mercury 07	02/15/17	02/15/17 13:42	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		1.16		0.0794	1.00			
SSP-4-6-M	17-02-0769-12-A	02/07/17 14:30	Solid	Mercury 07	02/15/17	02/15/17 13:44	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		0.586		0.0806	1.00			
SSP-4M-7-U	17-02-0769-13-A	02/07/17 15:30	Solid	Mercury 07	02/15/17	02/15/17 13:47	170215L01	
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers	
Mercury		1.25		0.0794	1.00			
SSP-4M-8-U	17-02-0769-14-A	02/07/17 16:30	Solid	Mercury 07	02/15/17	02/15/17 13:49	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		0.186		0.0806	1.00			
SSP-4-7-M	17-02-0769-15-A	02/07/17 15:30	Solid	Mercury 07	02/15/17	02/15/17 13:51	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		0.929		0.0820	1.00			
SSP-4-8-M	17-02-0769-16-A	02/07/17 16:30	Solid	Mercury 07	02/15/17	02/15/17 13:58	170215L01	
Parameter		Result		RL	DF	Qua	lifiers	
Mercury		1.38		0.0806	1.00			

Analytical Report

Terraphase Engineering, Inc.			Date Rece	ived:			02/09/17
1404 Franklin Street, Suite 600			Work Orde	er:			17-02-0769
Oakland, CA 94612-3215			Preparation	n:		EP/	A 7471A Total
			Method:				EPA 7471A
			Units:				mg/kg
Project: ISRI MSR Treatability Study	/ / 0102.001.004					Pa	ge 3 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-272-2831	N/A	Solid	Mercury 07	02/15/17	02/15/17 13:05	170215L01
Parameter		Result	RI		DF	Qua	lifiers
Mercury		ND	0.	0833	1.00		

🛟 eurofins

Calscience

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3545
	Method:	EPA 8082
	Units:	ug/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 5

Project: ISRI MSR Treatability Study / 0102.001.004

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-1-M	17-02-0769-4-A	02/07/17 09:00	Solid	GC 58	02/20/17	02/21/17 12:03	170220L05
Parameter		<u>Result</u>		RL	DF	Qual	fiers
Aroclor-1016		ND		1000	5.00		
Aroclor-1221		ND		1000	5.00		
Aroclor-1232		ND		1000	5.00		
Aroclor-1242		11000		1000	5.00		
Aroclor-1248		ND		1000	5.00		
Aroclor-1254		ND		1000	5.00		
Aroclor-1260		ND		1000	5.00		
Aroclor-1262		ND		1000	5.00		
Aroclor-1268		ND		1000	5.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		132		24-168			
2,4,5,6-Tetrachloro-m-Xylene		83		25-145			

SSP-4-2-M	17-02-0769-5-A	02/07/17 10:00	Solid GC 58	02/20/17	02/21/17 170220L05 12:21
Parameter		<u>Result</u>	RL	DF	Qualifiers
Aroclor-1016		ND	1000	5.00	
Aroclor-1221		ND	1000	5.00	
Aroclor-1232		ND	1000	5.00	
Aroclor-1242		4000	1000	5.00	
Aroclor-1248		ND	1000	5.00	
Aroclor-1254		ND	1000	5.00	
Aroclor-1260		ND	1000	5.00	
Aroclor-1262		ND	1000	5.00	
Aroclor-1268		ND	1000	5.00	
Surrogate		<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
Decachlorobiphenyl		96	24-168		
2,4,5,6-Tetrachloro-m-Xylene		78	25-145		

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3545
	Method:	EPA 8082
	Units:	ug/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-3-M	17-02-0769-6-A	02/07/17 11:00	Solid	GC 58	02/20/17	02/21/17 12:39	170220L05
Parameter		<u>Result</u>		RL	DF	Qual	ifiers
Aroclor-1016		ND		1000	5.00		
Aroclor-1221		ND		1000	5.00		
Aroclor-1232		ND		1000	5.00		
Aroclor-1242		9600		1000	5.00		
Aroclor-1248		ND		1000	5.00		
Aroclor-1254		ND		1000	5.00		
Aroclor-1260		ND		1000	5.00		
Aroclor-1262		ND		1000	5.00		
Aroclor-1268		ND		1000	5.00		
Surrogate		<u>Rec. (%)</u>	9	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		144	:	24-168			
2,4,5,6-Tetrachloro-m-Xylene		67	:	25-145			

SSP-4-4-M	17-02-0769-10-A	02/07/17 12:30	Solid	GC 58	02/20/17	02/21/17 12:57	170220L05
Parameter		<u>Result</u>		RL	DF	Qual	ifiers
Aroclor-1016		ND		1000	5.00		
Aroclor-1221		ND		1000	5.00		
Aroclor-1232		ND		1000	5.00		
Aroclor-1242		12000		1000	5.00		
Aroclor-1248		ND		1000	5.00		
Aroclor-1254		ND		1000	5.00		
Aroclor-1260		ND		1000	5.00		
Aroclor-1262		ND		1000	5.00		
Aroclor-1268		ND		1000	5.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
Decachlorobiphenyl		158		24-168			
2,4,5,6-Tetrachloro-m-Xylene		74		25-145			

Calscience

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3545
	Method:	EPA 8082
	Units:	ug/kg
Project: ISRI MSR Treatability Study / 0102.001.00	4	Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-5-M	17-02-0769-11-A	02/07/17 13:30	Solid	GC 58	02/20/17	02/21/17 13:15	170220L05
Parameter		<u>Result</u>		RL	DF	<u>Qua</u>	lifiers
Aroclor-1016		ND		1000	5.00		
Aroclor-1221		ND		1000	5.00		
Aroclor-1232		ND		1000	5.00		
Aroclor-1242		11000		1000	5.00		
Aroclor-1248		ND		1000	5.00		
Aroclor-1254		ND		1000	5.00		
Aroclor-1260		ND		1000	5.00		
Aroclor-1262		ND		1000	5.00		
Aroclor-1268		ND		1000	5.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		165		24-168			
2,4,5,6-Tetrachloro-m-Xylene		68		25-145			

SSP-4-6-M	17-02-0769-12-A	02/07/17 14:30	Solid	GC 58	02/20/17	02/21/17 13:33	170220L05
Parameter		<u>Result</u>	<u>R</u>	L	DF	<u>Qua</u>	lifiers
Aroclor-1016		ND	1(000	5.00		
Aroclor-1221		ND	1(000	5.00		
Aroclor-1232		ND	1(000	5.00		
Aroclor-1242		5300	1(000	5.00		
Aroclor-1248		ND	1(000	5.00		
Aroclor-1254		ND	1(000	5.00		
Aroclor-1260		ND	1(000	5.00		
Aroclor-1262		ND	1(000	5.00		
Aroclor-1268		ND	10	000	5.00		
Surrogate		<u>Rec. (%)</u>	C	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		257	24	4-168	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		78	25	5-145			

Calscience

Terraphase Engineering, Inc.	Date Received:	02/09/17	
1404 Franklin Street, Suite 600	Work Order:	17-02-0769	
Oakland, CA 94612-3215	Preparation:	EPA 3545	
	Method:	EPA 8082	
	Units:	ug/kg	
Project: ISRI MSR Treatability Study / 0102.001.004		Page 4 of 5	

Project: ISRI MSR Treatability Study / 0102.001.004

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-7-M	17-02-0769-15-A	02/07/17 15:30	Solid	GC 58	02/20/17	02/21/17 15:02	170220L05
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Quali</u>	fiers
Aroclor-1016		ND		4000	20.0		
Aroclor-1221		ND		4000	20.0		
Aroclor-1232		ND		4000	20.0		
Aroclor-1242		7100		4000	20.0		
Aroclor-1248		ND		4000	20.0		
Aroclor-1254		ND		4000	20.0		
Aroclor-1260		ND		4000	20.0		
Aroclor-1262		ND		4000	20.0		
Aroclor-1268		28000		4000	20.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		626		24-168	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		76		25-145			

SSP-4-8-M	17-02-0769-16-A	02/07/17 16:30	Solid	GC 58	02/20/17	02/21/17 14:09	170220L05
Parameter		<u>Result</u>		RL	DF	Qual	<u>ifiers</u>
Aroclor-1016		ND		1000	5.00		
Aroclor-1221		ND		1000	5.00		
Aroclor-1232		ND		1000	5.00		
Aroclor-1242		11000		1000	5.00		
Aroclor-1248		ND		1000	5.00		
Aroclor-1254		ND		1000	5.00		
Aroclor-1260		ND		1000	5.00		
Aroclor-1262		ND		1000	5.00		
Aroclor-1268		ND		1000	5.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
Decachlorobiphenyl		111		24-168			
2,4,5,6-Tetrachloro-m-Xylene		72		25-145			

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3545
	Method:	EPA 8082
	Units:	ug/kg
Project: ISRI MSR Treatability Study / 0102.001.004		Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-959-129	N/A	Solid	GC 58	02/20/17	02/21/17 10:51	170220L05
Parameter		Result	RI	=	DF	Qual	ifiers
Aroclor-1016		ND	50)	1.00		
Aroclor-1221		ND	50)	1.00		
Aroclor-1232		ND	50)	1.00		
Aroclor-1242		ND	50)	1.00		
Aroclor-1248		ND	50)	1.00		
Aroclor-1254		ND	50)	1.00		
Aroclor-1260		ND	50)	1.00		
Aroclor-1262		ND	50)	1.00		
Aroclor-1268		ND	50)	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		92	24	-168			
2,4,5,6-Tetrachloro-m-Xylene		79	25	-145			

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 5

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed l	MS/MSD Bat	tch Number
SSP-4M-1-U	Sample		Solid	ICP	7300	02/13/17	02/14/17	12:09	170213S02	
SSP-4M-1-U	Matrix Spike		Solid	ICP	7300	02/13/17	02/14/17	12:11 ·	170213S02	
SSP-4M-1-U	Matrix Spike	Duplicate	Solid	ICP	7300	02/13/17	02/14/17	12:12 ·	170213S02	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Antimony	14.65	25.00	45.62	124	32.72	72	50-115	33	0-20	3,4
Arsenic	ND	25.00	29.01	116	27.17	109	75-125	7	0-20	
Barium	655.5	25.00	1236	4X	680.9	4X	75-125	4X	0-20	Q
Beryllium	ND	25.00	23.24	93	23.85	95	75-125	3	0-20	
Cadmium	13.32	25.00	39.33	104	45.15	127	75-125	14	0-20	3
Chromium	62.73	25.00	101.7	156	138.7	304	75-125	31	0-20	3,4
Cobalt	21.88	25.00	53.01	125	57.91	144	75-125	9	0-20	3
Copper	3348	25.00	1315	4X	946.7	4X	75-125	4X	0-20	Q
Lead	608.0	25.00	856.2	4X	726.9	4X	75-125	4X	0-20	Q
Molybdenum	18.17	25.00	55.60	150	50.44	129	75-125	10	0-20	3
Nickel	124.4	25.00	179.2	4X	220.8	4X	75-125	4X	0-20	Q
Selenium	ND	25.00	19.72	79	18.74	75	75-125	5	0-20	
Silver	4.333	12.50	14.41	81	19.82	124	75-125	32	0-20	4
Thallium	ND	25.00	19.20	77	21.22	85	75-125	10	0-20	
Vanadium	7.762	25.00	30.55	91	31.28	94	75-125	2	0-20	
Zinc	11290	25.00	11200	4X	10470	4X	75-125	4X	0-20	Q

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 5

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
SSP-4M-1-U	Sample		Solid	ICF	9 7300	02/10/17	02/14/17	11:18	170213SA11	I
SSP-4M-1-U	Matrix Spike		Solid	ICF	9 7300	02/10/17	02/14/17	11:19	170213SA11	I
SSP-4M-1-U	Matrix Spike	Duplicate	Solid	ICF	9 7300	02/10/17	02/14/17	11:20	170213SA11	I
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Antimony	0.4764	5.000	5.356	98	5.447	99	50-115	2	0-20	
Arsenic	ND	5.000	5.149	103	5.210	104	75-125	1	0-20	
Barium	3.834	5.000	9.330	110	7.967	83	75-125	16	0-20	
Beryllium	ND	5.000	5.047	101	5.001	100	75-125	1	0-20	
Cadmium	0.5066	5.000	5.453	99	5.391	98	75-125	1	0-20	
Chromium	2.269	5.000	7.618	107	7.374	102	75-125	3	0-20	
Cobalt	0.8388	5.000	5.944	102	5.879	101	75-125	1	0-20	
Copper	0.1576	5.000	5.259	102	5.216	101	75-125	1	0-20	
Lead	21.88	5.000	29.52	4X	27.51	4X	75-125	4X	0-20	Q
Molybdenum	0.6059	5.000	5.652	101	5.602	100	75-125	1	0-20	
Nickel	3.803	5.000	9.177	107	8.679	98	75-125	6	0-20	
Selenium	ND	5.000	5.138	103	5.049	101	75-125	2	0-20	
Silver	ND	2.500	2.389	96	1.906	76	75-125	22	0-20	4
Thallium	ND	5.000	4.557	91	4.608	92	75-125	1	0-20	
Vanadium	0.1948	5.000	5.155	99	5.118	98	75-125	1	0-20	
Zinc	572.5	5.000	584.0	4X	536.9	4X	75-125	4X	0-20	Q

Quality Control - Spike/Spike Duplicate

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 7470A
Project: ISRI MSR Treatability Study / 0102.001.004		Page 3 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
SSP-4M-1-U	Sample		Solid	Mer	cury 07	02/10/17	02/17/17	11:54	170216SA3	
SSP-4M-1-U	Matrix Spike		Solid	Mer	cury 07	02/10/17	02/17/17	11:57	170216SA3	
SSP-4M-1-U	Matrix Spike	Duplicate	Solid	Mer	cury 07	02/10/17	02/17/17	11:59	170216SA3	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Mercury	ND	0.05000	0.04365	87	0.03612	72	55-133	19	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 7471A Total
	Method:	EPA 7471A
Project: ISRI MSR Treatability Study / 0102.001.00	04	Page 4 of 5

Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
SSP-4M-1-U	Sample		Solid	Ме	rcury 07	02/15/17	02/15/17	16:46	170215S01	
SSP-4M-1-U	Matrix Spike		Solid	Ме	rcury 07	02/15/17	02/15/17	16:48	170215S01	
SSP-4M-1-U	Matrix Spike I	Duplicate	Solid	Ме	rcury 07	02/15/17	02/15/17	16:50	170215S01	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Mercury	2.203	0.8350	3.564	163	3.813	193	71-137	7	0-14	3

Quality Control - Spike/Spike Duplicate

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3545
	Method:	EPA 8082
Project: ISRI MSR Treatability Study / 0102.001.	004	Page 5 of 5

Quality Control Sample ID Туре Matrix Instrument Date Prepared Date Analyzed MS/MSD Batch Number SSP-4-1-M Solid GC 58 02/20/17 02/21/17 12:03 170220S05 Sample SSP-4-1-M Matrix Spike Solid GC 58 02/20/17 02/21/17 11:27 170220S05 SSP-4-1-M Matrix Spike Duplicate Solid GC 58 02/20/17 02/21/17 11:45 170220S05 Parameter Sample <u>MS</u> <u>MSD</u> <u>MSD</u> %Rec. CL RPD RPD CL <u>Spike</u> MS

	Conc.	Added	Conc.	<u>%Rec.</u>	Conc.	<u>%Rec.</u>	
Aroclor-1016	ND	100.0	8703	8703	8805	8805	50-135
Aroclor-1260	ND	100.0	828.3	828	768.9	769	50-135

Qualifiers

3

3

1

7

0-20

0-25

Quality Control - Sample Duplicate

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	N/A
	Method:	ASTM D-2216 (M)
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
SSP-4-1-M	Sample	Solid	N/A	02/13/17 00:00	02/13/17 20:00	H0213MOID2
SSP-4-1-M	Sample Duplicate	Solid	N/A	02/13/17 00:00	02/13/17 20:00	H0213MOID2
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Moisture		51.40	49.00	5	0-10	

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepar	ed Date Analyze	ed LCS Batch Nu	umber
097-01-002-24335	LCS	Solid	ICP 7300	02/13/17	02/14/17 10:	16 170213L02	
Parameter	St	pike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony	25	5.00	23.14	93	80-120	73-127	
Arsenic	25	5.00	22.66	91	80-120	73-127	
Barium	25	5.00	24.91	100	80-120	73-127	
Beryllium	25	5.00	23.89	96	80-120	73-127	
Cadmium	25	5.00	23.79	95	80-120	73-127	
Chromium	25	5.00	24.74	99	80-120	73-127	
Cobalt	25	5.00	25.21	101	80-120	73-127	
Copper	25	5.00	24.53	98	80-120	73-127	
Lead	25	5.00	24.30	97	80-120	73-127	
Molybdenum	25	5.00	23.85	95	80-120	73-127	
Nickel	25	5.00	25.04	100	80-120	73-127	
Selenium	25	5.00	22.59	90	80-120	73-127	
Silver	12	2.50	11.67	93	80-120	73-127	
Thallium	25	5.00	24.40	98	80-120	73-127	
Vanadium	25	5.00	23.64	95	80-120	73-127	
Zinc	25	5.00	24.06	96	80-120	73-127	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 5

Quality Control Sample ID	Туре	Matrix		Instrument		Date Prepare	d Date Analyze	ed LCS Batch N	umber
097-05-006-8927	LCS	Aqueo	us	ICP 7300		02/10/17	02/14/17 11:	15 170213LA11	
Parameter		Spike Added	Conc. I	Recovered	LCS	<u>%Rec. </u>	6Rec. CL	ME CL	Qualifiers
Antimony		5.000	4.973		99	8	0-120	73-127	
Arsenic		5.000	4.985		100	8	0-120	73-127	
Barium		5.000	5.141		103	8	0-120	73-127	
Beryllium		5.000	5.062		101	8	0-120	73-127	
Cadmium		5.000	5.068		101	8	0-120	73-127	
Chromium		5.000	5.076		102	8	0-120	73-127	
Cobalt		5.000	5.194		104	8	0-120	73-127	
Copper		5.000	5.078		102	8	0-120	73-127	
Lead		5.000	4.992		100	8	0-120	73-127	
Molybdenum		5.000	5.120		102	8	0-120	73-127	
Nickel		5.000	5.014		100	8	0-120	73-127	
Selenium		5.000	5.062		101	8	0-120	73-127	
Silver		2.500	2.430		97	8	0-120	73-127	
Thallium		5.000	4.878		98	8	0-120	73-127	
Vanadium		5.000	5.015		100	8	0-120	73-127	
Zinc		5.000	5.289		106	8	0-120	73-127	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 7470A
Project: ISRI MSR Treatability Study / 0102.001.004		Page 3 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-04-004-850	LCS	Aqueous	Mercury 07	02/10/17	02/17/17 11:52	170216LA3
Parameter		Spike Added	Conc. Recover	red LCS %Re	<u>ec. %Rec.</u>	. CL Qualifiers
Mercury		0.05000	0.05015	100	80-120)

RPD: Relative Percent Difference. CL: Control Limits

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 7471A Total
	Method:	EPA 7471A
Project: ISRI MSR Treatability Study / 0102.001.004		Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-2831	LCS	Solid	Mercury 07	02/15/17	02/15/17 13:07	170215L01
Parameter		Spike Added	Conc. Recover	red LCS %Re	<u>. %Rec.</u>	<u>CL</u> <u>Qualifiers</u>
Mercury		0.8350	0.8106	97	85-121	1

RPD: Relative Percent Difference. CL: Control Limits

Qualifiers

Aroclor-1260

Terraphase Engineering, Inc.	Date Received:	02/09/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0769
Oakland, CA 94612-3215	Preparation:	EPA 3545
	Method:	EPA 8082
Project: ISRI MSR Treatability Study / 0102.001.004		Page 5 of 5

92.00

92

50-135

Quality Control - LCS

Quality Control Sample ID Matrix Instrument Date Prepared Date Analyzed LCS Batch Number Туре 099-15-959-129 LCS Solid 02/21/17 11:09 170220L05 GC 58 02/20/17 Parameter Spike Added Conc. Recovered LCS %Rec. %Rec. CL Aroclor-1016 100.0 86.00 86 50-135

100.0

RPD: Relative Percent Difference. CL: Control Limits

Calscience

Sample Analysis Summary Report

Work C	Order: 1	7-02-0769
--------	----------	-----------

Work Order: 17-02-0769				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-2216 (M)	N/A	1050	N/A	1
CA Fish and Game	N/A	691	TANK	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 6010B	T22.11.5. All	935	ICP 7300	1
EPA 7470A	T22.11.5. All	868	Mercury 07	1
EPA 7471A	EPA 7471A Total	868	Mercury 07	1
EPA 8082	EPA 3545	944	GC 58	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Calscience

Work Order: 17-02-0769

Glossary of Terms and Qualifiers

Vork Order:	17-02-0769	Page 1 of 1
<u>Qualifiers</u>	Definition	
*	See applicable analysis comment.	
<	Less than the indicated value.	
>	Greater than the indicated value.	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data clarification.	a was reported without further
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank sur in control and, therefore, the sample data was reported without further clarification.	rogate spike compound was
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspe associated LCS recovery was in control.	ected matrix interference. The
4	The MS/MSD RPD was out of control due to suspected matrix interference.	
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matri	ix interference.
6	Surrogate recovery below the acceptance limit.	
7	Surrogate recovery above the acceptance limit.	
В	Analyte was present in the associated method blank.	
BU	Sample analyzed after holding time expired.	
BV	Sample received after holding time expired.	
CI	See case narrative.	
E	Concentration exceeds the calibration range.	
ET	Sample was extracted past end of recommended max. holding time.	
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.	
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard b were also present (or detected).	out heavier hydrocarbons
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard b also present (or detected).	out lighter hydrocarbons were
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection lir estimated.	mit. Reported value is
JA	Analyte positively identified but quantitation is an estimate.	
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).	
ND	Parameter not detected at the indicated reporting limit.	
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample ex concentration by a factor of four or greater.	xceeding the spike
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.	
Х	% Recovery and/or RPD out-of-range.	
Z	Analyte presence was not confirmed by second column or GC/MS analysis.	
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % mo reported on a wet weight basis.	sisture. All QC results are
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holdin (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being stated holding time unless received at the laboratory within 15 minutes of the collection time.	ng time of <= 15 minutes g received outside of the

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

« •					•					• •		:						
eu eu	rc ns													с О	HAIN O	JF CUST		ORD
		Calsciel	nce					0 X	#/LABUS	EDNEY	l			DATE:	217	-117		
7440 Lincoln We For courier servi	ay, Garden Grove, CA 92 ce / sample drop off infor	841-1427 • (714) mation. contact u	4) 895-5494 us26 sales@e	urofinsus.com	or call us.					N		B		PAGE:		ō	M	
LABORATORY C	LIENT: Terraphase E	ingineering						CLIE	NT PROJE	CT NAME	/ NUMBEF	<u></u>				P.O. NO.:		
ADDRESS: 14	104 Franklin Street. St	uite 600						S G	RIMSR .	Treatabi	llity Stuc	dy / 010	2.001.00				LT.	
сіту: Oaklan	5			STATE:	CA ZIP:	6	4612	2 - -	nily Mose	sn: 510-	779-71	79 emily	.,mosen(@terraphase	e.com	Matt H	flora v	
TEL: 510-64!	5-1850	E-MAIL:	em	ıily.mosen@t	terraphase.	com							REQU	ESTED /	NALYS	ES	8	
	IME (Rush surcharges may a,	pply to any TAT not "	"STANDARD");		X						Please (check bo	ox or fill in	ı blank as n∈	eded.			
							ODE:	(12		9123								
SPECIAL INSTRU	ICTIONS:					F	F	₽7\0103 A93) si	Aq∃) alat∋M S	tent by ASA MD2 	atic Toxicity			······································				·····
						erveo	ved Iterec	Metal	itle 2: ۲۱)	EPA 8	supA							
LAB USE	SAMPLE ID	SAMP	PLING	- MATRIX	NO. OF	bresi	vreze 	52 ə	т-Т	isture ====================================	, Hour							
ONLY		DATE	TIME		CONT.	un	Pre Fie	IHIT	-09 3M	ЪС	-96							
SSP-	U-I-MH.	71/4/2	0900	Solid		×		メ	Ž	X	×							
2 55 P	-4M-2-U	2472/19/19	2001	Solid		×		X	X	X X	X							
3 559-	-41M-3-U	2/7/17	1100	Selig		×		メ	X	メメ	入 J							
4 SSP	M-1-H-	2/7/17	0900	Solid		×		У	X	X	X							
5 Sp	M-2-H-	2/7/17	0001	solid		X		\times	X	メズ	χ							
C SSP-	- H-3-M	キリチュ	1100	Said	-	X		メ	X	X X	X							
		· · · · · ·																
	¢																-	
Relinguished	Y: (\$ighardre)				Reç	Fed by:	(Signatur א לעי	e/Affiliat	on) #7	183	\$ 20 \$	101 ×	()		Date:	11/3	Time:	ige 72 S
Relisiquished b	y: (\$ighajurt)	,			Rec	eived by:	(Signatur	e/Affiliat	on)	-	. •				Date:		Time:	
Relinquished b	y: (Signature)				Rec	eived by:	(Signatur	e/Affiliat	(uo		۰. ۲		HH I	and a	Date:	4/17	Time: 102C	
													1/1					

•

• . °. V.

Return to Contents

06/02/14 Revision

.

																						Pa	ige 75	5 of 8	1	1_
CORD			·	V	3~	,																	VOPM		o 20	06/02/14 Revision
λQ	m			Del ai	hZd AZd	0																	Time:	Time:	Time:	
STO	ц В): (PRINT	or or																		2			
N. C.		0. NO.:		NPLER(S	has	S																	2/1-		A	
NON	2	. Б.		Z ^{SAI}	ν Υ	-YSE																	ate: 2/	ate:	ate: 9 :	
HAII 2					ie.com	ANAI	eeded.																			
C ATF: C	U U U U U U U U U U U U U U U U U U U				rraphas	TED	ank as n																			
<u> </u>	n 74		00.		en@tei	NES	fill in bla																646			
	Ś	~	02.001		ily.mos	REC	box or 1			-													5		A	
	5	ER:	udy / 01		179 em	•	e check							4.5	5	X	0	$\overline{\mathbf{x}}$					382		R	Ŕ
	n N	= / NUMB	bility St		7-677-(Please			(S808 Ac	lour /	96 НЭСН	$\overline{}$	X X	N	/ \ X	~ ~	X					342		1 A	
E DNLY.	Ó	CT NAME	Treatal	ITACT:	en: 510			9122	I MTSA	couteut py	əlni	sioM	~ ×	$\frac{1}{8}$	$\frac{2}{2}$	X	X	<u>、</u> 又					#			
(LIAB: US	Σ	IT PROJE	II MSR	ECT CON	ily Mos				A93) a	isteM SS etal (1)	117 - Tit	0109 LBM	X	X	X	メ	ど	X					on) c/L (w	ou)	(uo	
*o∧.		CLIEN	ISR	PROJ	ш Ш			(12	Þ2/0109 '	A9∃) etals (EPA	N 22	əltiT	У	X	X	X	×	X					e/Affiliati	e/Affiliati	e/Affiliati	
					12					ered	alifi b	l9i7						-					ignature X e X	lignature	lignature	
					9461	E	ARD	DG CODE		p;		Pre		*			~	۲				·	by: (S	ed by: (S	ed by: (S	
		IS.			ZIP:	ase.cor					0301	. Гол	\sim		×			\sim					Receive	Receive	Receive	
		or call u			CA	errapha	, y	۲Ų (NO.	CON OF	-		-		-									
		ofinsus.com			STATE: (/.mosen@te	5 DAYS					MATRIX	soli¥	Solid	Solid	solved	s'd rel	solid								
٩	5-5494	sales@eur				emily	NDARD"):	1			g	TIME	30	330	130	230	330	130								
C C	(714) 89	act us26					not "STA	1			AMPLIN		7 12	7	7 1	7	-	7 1								
S	315C	on, conta eering	B III D D	00		MAIL:	HR HR				Ś	DATE	17/1-	11/4	1/1/1/1	1/1-	14/1	141								
Ċ	92841-1	Fnoine	n Bu	Suite 6		Ë-	y apply to	1			_	<u> </u>	3	2	2	à	1	0					lard			
ns	an Grove, CA 9	ple drop off in Terraphase		nklin Street,			n surcharges mar	GLOBAL ID:				ole ID	U - H - I	1-2-1	1-6-0	M-11-	M-S	W-9-				1 n D	ante) ffu	atur e 1 ~	ature)	
Ľ,	۷, Garde	ce / sam IENT:		04 Fra	_	-1850	IME (Rusi 3 V I	ΠΡ	ICTIONS:			SAMI	- 4N	-ill	1- 14		7	5			-	4 4	the light	vy: (Siĝn	y: (Sign	
eu	soln Way	er servic TORY CL	v	14	Jaklanc	10-645		ELT E	L INSTRU				SSP	SSP.	SSP.	SS P	SSP	SSP				,	lished b	uished K	uished t	
	<u>ju</u>	RAUL	U U	1		ιu)	NA N	S S	I≤				t er e é c		 	1	h		 	h	h e ser d	*****	0	1 <u>o</u>	10	I

k...

eurc ns			CHA	IN OF CUSTODY	CORD
Calscience	WO#/LABUSED	NEY	DATE:	1/14	
7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494	0~/1	2 0769	PAGE:	3 OF	M
For counter service' sample drop off information, contact usze_sates@euroinsus.com of call us. LABORATORY CLIENT: Terraphase Engineering	CLIENT PROJECT	NAME / NUMBER:		P.O. NO.:	
ADDRESS: 7 2 2.	ISRI MSR Tre	eatability Study / 010	2.001.00		
1404 Franklin Street, Suite 600	PROJECT CONTAC	ï		NIN +++++++++++++++++++++++++++++++++++) yo
CITY: Cakland CITY: State: CA 2019 94612	Emily Mosen:	510-779-7179 emily	r.mosen@terraphase.con	HAGE Ort	22061
TEL: 510-645-1850 E-MAIL: emily.mosen@terraphase.com			REQUESTED ANA	LYSES 0	
TURNAROUND TIME (Rush surcharges may apply to any Tar not "STANDARD"): 「 こうれんて トゥック 「 フォ ப ロ 「 ゴ オゥ ப D 「 ゴ オゥ ப D 「 「 オゥ ロ > 「 左 D ヘ >)		Please check but	ox or fill in blank as needed		
	9122				
SPECIAL INSTRUCTIONS:	4710rc A93 20 MT8	ţλ			
	5PA 60) 8 (etals (8 (t by AS	2) Toxici		ξ	
pə	conten (16 22 M (1)	808 Aq DifeupA			
LAB SAMPLE ID SAMPLING NO. SECTION 10555 SAMPLE ID DATE TIME MATRIX OF COMPLEXES SAMPLE TIME TIME TIME TIME TIME TIME TIME TIM	-1610 FII 716 22 1 717 - Ti 710/74	E) s80			
13 SSP-4M-7-U 2/7/7 15 30 SULA 1 X		5 X 4 X	-	5	
14 SSP-4M-8-U 2/A/A 1630 Solid 1 ×	アメメ	X X X X			
12 SSP-4-7-M 2/7/17 1530 SSII 1 1 7	ヘメメ	エイン			
15 SSP-4-8-M 2/74/7-1632 Salid 1 4	XXXX	1 X X		ų.	
				·····	
					P
Relinquished by Bignaute)	ure/Affiliation) A (TYAC/King)	并1783.82 o	5 M25)	Date: Date: Tim 2/8/17	age 7
Relinduished by (Signature) Received by: (Signature)	ure/Affiliation)			Date; Date: Tim	<u>6 of 8</u>
Relinquished by: (Signature)	ure/Affiliation)	M	water	2/9/17 Tim 2/9/17 10	
	urh to Contents	Aller			06/02/14 Revision

•

r •

. . .

, Mar

Page 77 of 81 1769 SHIP DATE: 08FEB17 ACTWGT: 20.00 LB CAD: 102392669/INET3850 ORIGIN ID: JEMA (510) 779-7179 1ASE ENGINEERING NKLIN ST BILL SENDER ÖAKLAND, CA 94612 UNITED STATES US DONALD BURLEY TO **EUROFINS CALSCIENCE** 546J1/33BB/53C1 7440 LINCOLN WAY **GARDEN GROVE CA 92841** (714) 895-5494 NV: PO: REF: 0102.001.004 FedEx Ship Manager - Print Your Label(s) Fed Exc. 171017010E01u THU - 09 FEB 3:00P 1 of 3 STANDARD OVERNIGHT ТRК# 7783 8205 1716 ## MASTER ## 92841 92 APVA **SNA** CA-US 2/8/2017 THU - 09 FI FedE THU - 09 FEB 3:00P 3 of 3 MPS# 0263 Mstr# 7783 8205 195 Mstr# 7783 8205 1716 2 of 3 7783 8205 1955 STANDARD OVE STANDARD OVERNIGHT MPS# 7783 8205 1646 0263 0201 0201 Mstr# 7783 8205 1716 92841 **92 APVA** PV 92 AI CA-US SNA CA-US

💸 eurofins				R NUMBER:	Pag 17-02	e 78 of 8 2-	1769
	Calscience	SAMPLE RECEIPT	CHECKLIST	с	OOLER	<u> </u>)F <u>3</u>
CLIENT:	erraphase	9		DA	TE: 02	1091	2017
TEMPERATURE: (Cr Thermometer ID: SC3 Sample(s) outsid Sample(s) outsid Sample(s) received Ambient Temperature	riteria: 0.0°C – 6.(3B (CF: 0.0°C); T de temperature c de temperature c d at ambient temp e: □ Air □ Filter	D°C, not frozen except sedim emperature (w/o CF): <u>4 · (</u> riteria (PM/APM contacted b riteria but received on ice/ch perature; placed on ice for tra	ent/tissue) °C (w/ CF): y:) illed on same day c insport by courier	ƴ_)°C; [of sampling	3 Blank Checke	D Sam	ole
CUSTODY SEAL: Cooler	ent and Intact ent and Intact	□ Present but Not Intact □ Present but Not Intact	Not Present	□ N/A □ N/A	Checke Checke	ed by:	5 053
SAMPLE CONDITION Chain-of-Custody (CC COC document(s) rec Sampling date	N: DC) document(s) ceived complete □ Sampling time	received with samples ■ □ Matrix □ Number of co	ontainers		Yes	No □ □	N/A
□ No analysis requ Sampler's name indic Sample container labe Sample container(s) in Proper containers for	uested D Not re ated on COC el(s) consistent w ntact and in good analyses request	linquished D No relinquished ith COC	ed date □ No relir	nquished time			
Sufficient volume/mas Samples received with Aqueous samples	ss for analyses re hin holding time for certain analys	quested	e holding time				
□ pH □ Residual Proper preservation c Unpreserved aque	I Chlorine □ Dis hemical(s) noted ous sample(s) re	solved Sulfide Dissolved on COC and/or sample cont ceived for certain analyses	Oxygenainer	······			Ø
Container(s) for certai	s ☐ Total Metal in analysis free of s ☐ Dissolved C (SM 4500) □ E	s 🔲 Dissolved Metals f headspace Gases (RSK-175) 🔲 Dissolv errous Iron (SM 3500) 🔲 Hy	ved Oxygen (SM 45				ø
Tedlar™ bag(s) free c	of condensation						₫
CONTAINER TYPE: Aqueous: □ VOA □ □ 125PBznna □ 250 □ 500PB □ 1AGB □ Solid: □ 4ozCGJ □ 8 Air: □ Tedlar™ □ Ca Container: A = Amber, E	VOAh □ VOAna AGB □ 250CGB □ 1AGBna₂ □ 1A BozCGJ □ 16ozC anister □ Sorben B = Bottle, C = Clea	a₂ □ 100PJ □ 100PJna₂ □ □ 250CGBs □ 250PB □ AGBs □ 1PB □ 1PBna □ CGJ □ Sleeve () □ Ei t Tube □ PUF □ ar, E = Envelope, G = Glass, J =	(Trip Blan 125AGB □ 125AG 250PBn □ 500AG □ nCores [®] () □ Other Matrix (Jar, P = Plastic, and	k Lot Numbe GBh □ 125A B □ 500AGJ □ I TerraCores [®]): □ Z = Ziploc/Res	ealable B	125PB AGJ s D <u>1.51</u>) PJ
Preservative: b = buffere s = H ₂ SO ₄	ed, f = filtered, h = , u = ultra-pure, x =	HCl, n = HNO ₃ , na = NaOH, na = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna =	₂ = Na ₂ S ₂ O ₃ , p = H ₃ P = Zn (CH ₃ CO ₂) ₂ + Na(O₄, Labeleo OH	d/Checke Reviewe	ed by: <u>//</u> ed by: <u>6</u>	1 <u>53</u> ∦

~~ ~ ~	~~ ~~	- · ·
2016	10 22	
2010	·U.7-Z.J	INCVISION.
	~~ ~~	

seurofins			WORK ORDER	R NUMBER:	Ра 17—0	age 79 of 2- <u>0</u>	81 76 9
••	Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLEF	x_2_c)F 3
CLIENT:	Terraphase	o		DA	ге: 02	109	2017
TEMPERATURE: (C Thermometer ID: SC Sample(s) outs Sample(s) outs Sample(s) received	Criteria: 0.0°C – 6.0 Criteria: 0.0°C – 6.0 Side temperature c side temperature c ed at ambient temp	O°C, not frozen except sedim emperature (w/o CF): <u> </u>	ent/tissue) ⁴ _°C (w/ CF): <u>/</u> y:) illed on same day c ansport by courier	مر °C; ۵ of sampling] Blank	D Sam	ple
Ambient Temperatu					Check	eu by	
CUSTODY SEAL: Cooler	esent and Intact esent and Intact	 Present but Not Intact Present but Not Intact 	Not Present	□ N/A □ N/A	Check Check	ed by: ed by: _ /(<u>5</u> 253
SAMPLE CONDITIO	ON:				Yes	No	N/A
Chain-of-Custody (C COC document(s) re	OC) document(s)	received with samples					
□ Sampling date	□ Sampling time	e 🗆 Matrix 🗆 Number of c	ontainers	autobod timo			
□ No analysis re	quested LI Not re	alinquished LI No relinquish	ed date LI No relir	iquisnea time			П
Sampler's name ind	balla) consistent w					п	
Sample container la	bei(s) consistent w					П	
Bronor container(s)					7		
Sufficient volume/m	a analyses reques				Ē,		
Samples received w	ithin holding time						
	s for certain analys	ses received within 15-minute	e holding time		<i>_</i>		
		solved Sulfide Dissolved	l Oxvaen				
Proper preservation	chemical(s) noted	on COC and/or sample cont	ainer				
	eous sample(s) re	ceived for certain analyses				×.	<i>P</i>
□ Volatile Organ	ics □ Total Meta	Is Dissolved Metals					
Container(s) for cert	ain analysis free o	f headspace					Ø
□ Volatile Organ	ics Dissolved (Gases (RSK-175) Dissol	ved Oxygen (SM 45	500)			*
	e (SM 4500) □ F	errous Iron (SM 3500)	vdrogen Sulfide (Ha	ach)			/
Tedlar™ baq(s) free	of condensation						6
			(Trip Blar	nk Lot Numbe	er:)
Aqueous: □ VOA □ □ 125PBznna □ 25 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ 0	∃ VOAh □ VOAn 50AGB □ 250CGE □ 1AGBna₂ □ 1,] 8ozCGJ □ 16oz Canister □ Sorber	a₂ □ 100PJ □ 100PJna₂ □ 3 □ 250CGBs □ 250PB □ AGBs □ 1PB □ 1PBna □ CGJ □ Sleeve () □ E nt Tube □ PUF □	125AGB □ 125A 1250PBn □ 500AG □ nCores [®] () □	GBh □ 125A GBh □ 500AGJ □] TerraCores [®]): □	GBp GBp 500 (125PB AGJs 2 2 2 1.5	PJ
Container: A = Amber Preservative: b = buffe s = H ₂ Se	, $\mathbf{B} = Bottle$, $\mathbf{C} = Clearered, \mathbf{f} = filtered, \mathbf{h} = O_4, \mathbf{u} = ultra-pure, \mathbf{x}$	ar, E = Envelope, G = Glass, J = HCl, n = HNO ₃ , na = NaOH, na = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna	= Jar, P = Plastic, and 1 ₂ = Na ₂ S ₂ O ₃ , p = H ₃ F = Zn (CH ₃ CO ₂) ₂ + Na	I Z = Ziploc/Res PO ₄ , Labele OH	ealable I d/Check Review	Bag ted by: <u>I/</u> ved by: <u>6</u>	2.53 81.

2667

Return to Contents

eurofins			WORK ORDER	R NUMBER: '	Page 17-02-	80 of 81	Ĵ_
	Calscience	SAMPLE RECEIPT	CHECKLIST	CC	DOLER_	<u>3</u> of <u>3</u>	3
CLIENT:	erraphase	0		DAT	: 02 / <u>(</u>	<u>9</u> 1 20	17
TEMPERATURE: (C Thermometer ID: SC Sample(s) outs Sample(s) outs Sample(s) received Ambient Temperature	Criteria: 0.0°C – 6. C3B (CF: 0.0°C); T side temperature c side temperature c ed at ambient temp re: □ Air □ Filter	0°C, not frozen except sedim emperature (w/o CF): <u>5 (</u> riteria (PM/APM contacted b riteria but received on ice/ch perature; placed on ice for tra	nent/tissue) °C (w/ CF): _5 py:) illed on same day c ansport by courier	<u>5 </u> ℃; ⊏ of sampling	Blank D	Sample	
CUSTODY SEAL:CoolerI PreSample(s)I Pre	esent and Intact esent and Intact	□ Present but Not Intact □ Present but Not Intact	Not Present	□ N/A □ N/A	Checked Checked	by: <u>15</u> by: <u>1053</u>	
SAMPLE CONDITION Chain-of-Custody (C COC document(s) re Sampling date	DN: COC) document(s) eceived complete □ Sampling time	received with samples e □ Matrix □ Number of c	ontainers		Yes D		'A]]
□ No analysis re Sampler's name ind Sample container la Sample container(s) Proper containers fo Sufficient volume/ma Samples received w	quested	vith COC I condition ted	ed date	nquished time	म म म म म म		נ נ נ כ כ
□ pH □ Residu Proper preservation Unpreserved aqu	al Chlorine	solved Sulfide □ Dissolved on COC and/or sample con ceived for certain analyses	d Oxygen tainer				
☐ Volatile Organ Container(s) for cert ☐ Volatile Organ ☐ Carbon Dioxid	ics ⊔ i otal Metal ain analysis free o ics □ Dissolved (e (SM 4500) □ F	IS ☐ DISSOIVED METAIS f headspace Gases (RSK-175) ☐ Dissol errous Iron (SM 3500) ☐ H	ved Oxygen (SM 45 lydrogen Sulfide (Ha	600) ach)			۲ ۲
Tedlar™ bag(s) free	of condensation			, ,		o Ç	1
CONTAINER TYPE Aqueous: □ VOA □ □ 125PBznna □ 25 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ 0 Container: A = Amber Preservative: b = buffe	: ☐ VOAh ☐ VOAn 50AGB ☐ 250CGE ☐ 1AGBna₂ ☐ 1/] 8ozCGJ ☐ 16oz Canister ☐ Sorber , B = Bottle, C = Clea ered, f = filtered, h =	a₂ □ 100PJ □ 100PJna₂ □ 3 □ 250CGBs □ 250PB □ AGBs □ 1PB □ 1PBna □ CGJ □ Sleeve () □ E nt Tube □ PUF □ ar, E = Envelope, G = Glass, J HCl, n = HNO₃, na = NaOH, na	(Trip Blan ☐ 125AGB ☐ 125AG ☐ 250PBn ☐ 500AG ☐ inCores [®] () ☐ Other Matrix (= Jar, P = Plastic, and a ₂ = Na ₂ S ₂ O ₃ , p = H ₃ P	Ik Lot Number GBh □ GBh □ 125AC GB □ 500AGJ □ □	r: GBp □ 12 □ 500AG □ □) 2 ealable Bag I/Checked	5PB 5Js <u>1-5 PJ</u> D by: <u>105</u>	_) -

1.22.2

Donald Burley

From:	Emily Mosen <emily.mosen@terraphase.com></emily.mosen@terraphase.com>
Sent:	Friday, February 10, 2017 10:08 AM
То:	Donald Burley
Subject:	RE: ISRI MSR Treatability Study / 0102.001.00 - 17-02-0769 - Sample Receipt
-	Confirmation & COC Document

Don,

I noticed an error on the COC. The PCBs and aquatic toxicity should have only been requested for the samples with ID's ending in "-M". (They should not have been requested for samples ending in "-U".)

Thanks, Emily

From: Emily Mosen
Sent: Friday, February 10, 2017 9:55 AM
To: Donald Burley <<u>DonaldBurley@eurofinsUS.com</u>>
Subject: RE: ISRI MSR Treatability Study / 0102.001.00 - 17-02-0769 - Sample Receipt Confirmation & COC Document

Hi Don,

Thank you for asking. I would like a 4 at the end of the project number.

Thanks, Emily

From: Donald Burley [mailto:DonaldBurley@eurofinsUS.com]
Sent: Thursday, February 09, 2017 4:02 PM
To: Emily Mosen <<u>emily.mosen@terraphase.com</u>>
Subject: ISRI MSR Treatability Study / 0102.001.00 - 17-02-0769 - Sample Receipt Confirmation & COC Document

Emily,

Do you want a number at the end of the project number extension or leave at .00? Thank you.

Don

Eurofins Calscience, Inc. 7440 Lincoln Way Garden Grove, CA 92841 USA Phone: +1 714 895 5494

Email: <u>DonaldBurley@eurofinsUS.com</u> Website: <u>www.eurofinsUS.com/Calscience</u>

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

Calscience

WORK ORDER NUMBER: 17-02-0911

The difference is service

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Terraphase Engineering, Inc. Client Project Name: ISRI MSR Treatability Study / 0102.001.004 Attention: Emily Mosen 1404 Franklin Street

Suite 600 Oakland, CA 94612-3215

Approved for release on 02/22/2017 by: Don Burley Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🛟 eurofins

Calscience

Contents

Client Pro Work Orc	bject Name: ler Number:	ISRI MSR Treatability Study / 0102.001.004 17-02-0911	
1	Work Ore	der Narrative	3
2	Sample S	Summary	4
3	Client Sa 3.1 AST 3.2 EPA 3.3 EPA	ample Data. M D-2216 (M) Moisture Content (Solid). 6010B ICP Metals (Solid). 6010B STLC ICP Metals (Aqueous).	5 5 8 12
4	Quality C 4.1 MS/I 4.2 Sam 4.3 LCS	Control Sample Data	18 18 20 21
5	Sample /	Analysis Summary	23
6	Glossary	of Terms and Qualifiers	24
7	Chain-of-	-Custody/Sample Receipt Form	25

Work Order: 17-02-0911

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 02/10/17. They were assigned to Work Order 17-02-0911.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Client:	Terraphase Engineering, Inc.	Work Order:	17-02-0911		
	1404 Franklin Street, Suite 600	Project Name:	ISRI MSR Treatability Study / 0102.001.004		
	Oakland, CA 94612-3215	PO Number:	02/10/17 10:2		
		Date/Time Received:			
		Number of Containers:	16		
Attn:	Emily Mosen				

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
SSP-4H-1-U	17-02-0911-1	02/08/17 07:30	1	Solid
SSP-4H-2-U	17-02-0911-2	02/08/17 08:30	1	Solid
SSP-4H-3-U	17-02-0911-3	02/08/17 09:30	1	Solid
SSP-4H-4-U	17-02-0911-4	02/08/17 10:30	1	Solid
SSP-4-1-H	17-02-0911-5	02/08/17 07:30	1	Solid
SSP-4-2-H	17-02-0911-6	02/08/17 08:30	1	Solid
SSP-4-3-H	17-02-0911-7	02/08/17 09:30	1	Solid
SSP-4-4-H	17-02-0911-8	02/08/17 10:30	1	Solid
SSP-4H-5-U	17-02-0911-9	02/08/17 11:30	1	Solid
SSP-4H-6-U	17-02-0911-10	02/08/17 12:30	1	Solid
SSP-4H-7-U	17-02-0911-11	02/08/17 13:30	1	Solid
SSP-4H-8-U	17-02-0911-12	02/08/17 14:30	1	Solid
SSP-4-5-H	17-02-0911-13	02/08/17 11:30	1	Solid
SSP-4-6-H	17-02-0911-14	02/08/17 12:30	1	Solid
SSP-4-7-H	17-02-0911-15	02/08/17 13:30	1	Solid
SSP-4-8-H	17-02-0911-16	02/08/17 14:30	1	Solid

Terraphase Engineering, Inc.			Date Re	eceived:			02/10/17
1404 Franklin Street, Suite 600		Work O	rder:		17-02-0911		
Oakland, CA 94612-3215		Prepara	tion:				
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Study	y / 0102.001.004					Pa	ge 1 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrum	ent Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4H-1-U	17-02-0911-1-A	02/08/17 07:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		35		0.10	1.00		
SSP-4H-2-U	17-02-0911-2-A	02/08/17 08:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		37		0.10	1.00		
SSP-4H-3-U	17-02-0911-3-A	02/08/17 09:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		31		0.10	1.00		
SSP-4H-4-U	17-02-0911-4-A	02/08/17 10:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		36		0.10	1.00		
SSP-4-1-H	17-02-0911-5-A	02/08/17 07:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		46		0.10	1.00		
SSP-4-2-H	17-02-0911-6-A	02/08/17 08:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		40		0.10	1.00		
SSP-4-3-H	17-02-0911-7-A	02/08/17 09:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		45		0.10	1.00		
SSP-4-4-H	17-02-0911-8-A	02/08/17 10:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		4.4		0.10	1.00		

Terraphase Engineering, Inc.			Date Re	ceived:			02/10/17
1404 Franklin Street, Suite 600		Work O	rder:			17-02-0911	
Oakland, CA 94612-3215	Preparation:				N/A		
			Method:			AST	M D-2216 (M)
			Units:				%
Project: ISRI MSR Treatability Study	y / 0102.001.004					Pa	ge 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4H-5-U	17-02-0911-9-A	02/08/17 11:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		30		0.10	1.00		
SSP-4H-6-U	17-02-0911-10-A	02/08/17 12:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		41		0.10	1.00		
SSP-4H-7-U	17-02-0911-11-A	02/08/17 13:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		31		0.10	1.00		
SSP-4H-8-U	17-02-0911-12-A	02/08/17 14:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>
Moisture		31		0.10	1.00		
SSP-4-5-H	17-02-0911-13-A	02/08/17 11:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		32		0.10	1.00		
SSP-4-6-H	17-02-0911-14-A	02/08/17 12:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		<u>RL</u>	DF	Qua	lifiers
Moisture		41		0.10	1.00		
SSP-4-7-H	17-02-0911-15-A	02/08/17 13:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Moisture		39		0.10	1.00		
SSP-4-8-H	17-02-0911-16-A	02/08/17 14:30	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		Result		RL	DF	Qua	lifiers
Moisture		44		0.10	1.00		

Terraphase Engineering, Inc.		Date Rec	ceived:		02/10/17		
1404 Franklin Street, Suite 600		Work Ord	der:			17-02-0911	
Oakland, CA 94612-3215		Preparation:			N/A		
			Method:			ASTM D-2216 (M)	
			Units:				%
Project: ISRI MSR Treatability Stud	Ļ				Pa	ge 3 of 3	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-05-014-6693	N/A	Solid	N/A	02/18/17	02/18/17 18:00	H0218MOIB2
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Moisture		ND		0.10	1.00		

Terraphase	Engineering, Inc.			Date Re	ceived:			02/10/17
1404 Frankl	in Street, Suite 600	Work Order:				17-02-0911		
Oakland, C	A 94612-3215		Prepara	EPA 3050B				
				Method:				EPA 6010B
				Linits [.]				ma/ka
Project: ISR	I MSR Treatability Stur	tv / 0102 001 004	1	onito.			Pa	ing/ing
		ly / 0102.001.00-	T				10	
Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4H-1-U		17-02-0911-1-A	02/08/17 07:30	Solid	ICP 7300	02/13/17	02/14/17 11:47	170213L03
Comment(s):	- The reporting limit is eleve	vated resulting from r	matrix interferei	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			17.8		5.05	10.1		
Lead			993		5.05	10.1		
Zinc			9790		10.1	10.1		
SSP-4H-2-U		17-02-0911-2-A	02/08/17 08:30	Solid	ICP 7300	02/13/17	02/14/17 11:50	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from r	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			11.0		5.00	10.0		
Lead			784		5.00	10.0		
Zinc			9190		10.0	10.0		
SSP-4H-3-U		17-02-0911-3-A	02/08/17 09:30	Solid	ICP 7300	02/13/17	02/14/17 11:51	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from r	natrix interfere	nce.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			10.4		4.81	9.62		
Lead			656		4.81	9.62		
Zinc			8410		9.62	9.62		
SSP-4H-4-U		17-02-0911-4-A	02/08/17 10:30	Solid	ICP 7300	02/13/17	02/14/17 11:52	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from r	natrix interfere	nce.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			ND		5.10	10.2		
Lead			214		5.10	10.2		
Zinc			3070		10.2	10.2		
SSP-4-1-H		17-02-0911-5-A	02/08/17 07:30	Solid	ICP 7300	02/13/17	02/14/17 11:52	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from r	matrix interfere	nce.				
Parameter		-	<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			9.79		4.83	9.66		
Lead			789		4.83	9.66		
Zinc			11300		9.66	9.66		

Analytical Report

Terraphase	Engineering, Inc.			Date Re	eceived:			02/10/17
1404 Franklin Street, Suite 600 Oakland, CA 94612-3215				Work O	17-02-0911			
				Prepara		EPA 3050B		
				Method:				EPA 6010B
				Units:				ma/ka
Project: ISR	I MSR Treatability Stud	y / 0102.001.004	1	•			Pa	age 2 of 4
Client Sample I	Number	Lab Sample Number	Collected	Matrix	Instrument	Date Prepared	Analyzed	QC Batch ID
SSP-4-2-H		17-02-0911-6-A	02/08/17 08:30	Solid	ICP 7300	02/13/17	02/14/17 11:53	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from n	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			7.17		4.83	9.66		
Lead			606		4.83	9.66		
Zinc			6950		9.66	9.66		
SSP-4-3-H		17-02-0911-7-A	02/08/17 09:30	Solid	ICP 7300	02/13/17	02/14/17 11:54	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from n	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			8.27		4.83	9.66		
Lead			647		4.83	9.66		
Zinc			7410		9.66	9.66		
SSP-4-4-H		17-02-0911-8-A	02/08/17 10:30	Solid	ICP 7300	02/13/17	02/14/17 11:59	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from n	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
Cadmium			12.2		4.90	9.80		
Lead			832		4.90	9.80		
Zinc			10100		9.80	9.80		
SSP-4H-5-U		17-02-0911-9-A	02/08/17 11:30	Solid	ICP 7300	02/13/17	02/14/17 11:59	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from n	natrix interfere	ence.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			10.3		5.15	10.3		
Lead			775		5.15	10.3		
Zinc			7980		10.3	10.3		
SSP-4H-6-U		17-02-0911-10-A	02/08/17 12:30	Solid	ICP 7300	02/13/17	02/14/17 12:00	170213L03
Comment(s):	- The reporting limit is elev	vated resulting from n	natrix interfere	ence.				
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	alifiers
Cadmium			ND		5.05	10.1		
Lead			1070		5.05	10.1		
Zinc			5160		10.1	10.1		

Analytical Report

Terraphase B	Engineering. Inc.			Date Received: 02					
1404 Frankli	n Street. Suite 600			Work O	rder:			17-02-0911	
Oakland, CA	94612-3215			Prepara	tion:			EPA 3050B	
	0.0.2 02.0			Method:				EPA 6010B	
				Units:				ma/ka	
Project: ISRI	MSR Treatability Study	y / 0102.001.004	ļ	••••••			Ра	ge 3 of 4	
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
SSP-4H-7-U		17-02-0911-11-A	02/08/17 13:30	Solid	ICP 7300	02/13/17	02/14/17 12:01	170213L03	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers	
Cadmium			8.49		5.05	10.1			
Lead			8810		5.05	10.1			
Zinc			10100		10.1	10.1			
SSP-4H-8-U		17-02-0911-12-A	02/08/17 14:30	Solid	ICP 7300	02/13/17	02/14/17 12:02	170213L03	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers	
Cadmium			9.05		4.88	9.76			
Lead			1630		4.88	9.76			
Zinc			8110		9.76	9.76			
SSP-4-5-H		17-02-0911-13-A	02/08/17 11:30	Solid	ICP 7300	02/13/17	02/14/17 12:03	170213L03	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.					
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers	
Cadmium			6.05		4.85	9.71			
Lead			471		4.85	9.71			
Zinc			4780		9.71	9.71			
SSP-4-6-H		17-02-0911-14-A	02/08/17 12:30	Solid	ICP 7300	02/13/17	02/14/17 12:04	170213L03	
Comment(s):	- The reporting limit is eleva	ated resulting from m	natrix interfere	nce.			-		
Parameter		-	Result		<u>RL</u>	DF	Qua	lifiers	
Cadmium			13.3		4.78	9.57			
Lead			928		4.78	9.57			
Zinc			7740		9.57	9.57			
SSP-4-7-H		17-02-0911-15-A	02/08/17	Solid	ICP 7300	02/13/17	02/14/17	170213L03	
Comment(s):	- The reporting limit is eleve	ated resulting from m	atrix interfere	nce			12.07		
Parameter			Result		RL	DF	Qua	lifiers	
Cadmium			ND		<u></u> 4.83	<u></u> 9.66			
Lead			185		4.83	9.66			
Zinc			2280		9.66	9.66			
					2.00	0.00			

Terraphase Engineering, Inc. Date Received:							02/10/17		
1404 Franklin Street, Suite 600			Work Ord	er:			17-02-0911		
Oakland, CA 94612-3215			Preparatio	on:		EPA 3050B			
			Method:			EPA 6010B			
Units:							mg/kg		
Project: ISRI MSR Treatability Study / 0102.001.004							ge 4 of 4		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
SSP-4-8-H	17-02-0911-16-A	02/08/17 14:30	Solid	ICP 7300	02/13/17	02/14/17 12:08	170213L03		
Comment(s): - The reporting limit is ele	vated resulting from m	natrix interfere	ence.						
Parameter		Result	<u>F</u>	<u> </u>	DF	Qua	alifiers		
Cadmium		12.0	4	.93	9.85				
Lead		707	4	.93	9.85				
Zinc		6920	9	.85	9.85				
Mothod Blank	007-01-002-24334	N/A	Solid	ICB 7300	02/12/17	02/14/17	1702121 02		

	097-01-002-24334 N/A	3010		10:17	LU3
Parameter	Resu	<u>lt RL</u>	DF	Qualifiers	
Cadmium	ND	0.48	0.966		
Lead	ND	0.48	0.966		
Zinc	ND	0.96	6 0.966		

Terraphase I	Engineering, Inc.			Date Re	ceived:		02/10/17	
1404 Frankli	n Street, Suite 600			Work Or	der:		17-02-0911	
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All
				Method:				EPA 6010B
				Units:	mg/L			
Project: ISRI	MSR Treatability Study	y / 0102.001.004	1				Ра	ge 1 of 6
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4H-1-U		17-02-0911-1-A	02/08/17 07:30	Solid	ICP 7300	02/13/17	02/16/17 15:57	170216LA7
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the sampl	e.				
Parameter			Result	<u>RL</u> <u>DF</u>			Qua	lifiers
Cadmium			0.465		0.100	1.00		
Lead			38.4		0.100			
SSP-4H-1-U		17-02-0911-1-A	02/08/17 07:30	Solid	ICP 7300	02/13/17	02/16/17 16:44	170216LA7
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the sampl	е.		-		
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	<u>llifiers</u>
Zinc			559		1.00	10.0		
SSP-4H-2-U		17-02-0911-2-A	02/08/17 08:30	Solid	ICP 7300	02/13/17	02/16/17 16:00	170216LA7
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the sampl	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Cadmium			0.217		0.100	1.00		
Lead			40.1		0.100	1.00		
SSP-4H-2-U		17-02-0911-2-A	02/08/17 08:30	Solid	ICP 7300	02/13/17	02/16/17 16:45	170216LA7
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the sampl	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Zinc			603		1.00	10.0		
SSP-4H-3-U		17-02-0911-3-A	02/08/17 09:30	Solid	ICP 7300	02/13/17	02/16/17 16:01	170216LA7
Comment(s):	- The analysis was perform	ned on a STLC extra	ct of the sampl	e.				
<u>Parameter</u>			<u>Result</u>		RL	DF	Qua	<u>lifiers</u>
Cadmium			0.443		0.100	1.00		
Lead			37.9		0.100	1.00		
Zinc			451		0.100	1.00		

Terraphase	rraphase Engineering, Inc.				eceived:	02/10/17		
1404 Frankl	in Street, Suite 600			Work O	rder:			17-02-0911
Oakland, CA	94612-3215			Prepara	ition:			T22.11.5. All
				Method	:			EPA 6010B
				Units:				ma/L
Project: ISR	I MSR Treatability Stud	ly / 0102.001.004	1				Pa	ige 2 of 6
Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4H-4-U		17-02-0911-4-A	02/08/17 10:30	Solid	ICP 7300	02/13/17	02/16/17 16:01	170216LA7
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the samp	ole.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			ND		0.100	1.00		
Lead			32.9	0.100		1.00		
Zinc			456		0.100	1.00		
SSP-4-1-H		17-02-0911-5-A	02/08/17 07:30	Solid	ICP 7300	02/13/17	02/16/17 16:02	170216LA7
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the samp	ole.				
Parameter 1			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.481		0.100	1.00		
Lead			15.6		0.100	1.00		
Zinc			328		0.100	1.00		
SSP-4-2-H		17-02-0911-6-A	02/08/17 08:30	Solid	ICP 7300	02/13/17	02/16/17 16:03	170216LA7
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the samp	ole.				
Parameter erementer			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			ND		0.100	1.00		
Lead			0.463		0.100	1.00		
Zinc			22.1		0.100	1.00		
SSP-4-3-H		17-02-0911-7-A	02/08/17 09:30	Solid	ICP 7300	02/13/17	02/16/17 16:04	170216LA7
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the samp	ole.				
Parameter			Result		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.484		0.100	1.00		
Lead			27.1		0.100	1.00		
SSP-4-3-H		17-02-0911-7-A	02/08/17 09:30	Solid	ICP 7300	02/13/17	02/16/17 16:46	170216LA7
Comment(s):	- The analysis was perforr	ned on a STLC extra	ct of the samp	ole.				
Parameter	· ·		<u>Result</u>		RL	DF	Qua	alifiers
Zinc			691		1.00	10.0		

Analytical Report

Terraphase E	Engineering, Inc.			Date Re	ceived:		02/10/17			
1404 Franklir	n Street, Suite 600			Work Or	der:		17-02-0911			
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All		
				Method:				EPA 6010B		
				Units:				mg/L		
Project: ISRI	MSR Treatability Stud	y / 0102.001.004	Ļ				Pa	ge 3 of 6		
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
SSP-4-4-H		17-02-0911-8-A	02/08/17 10:30	Solid	ICP 7300	02/13/17	02/16/17 16:05	170216LA7		
Comment(s):	- The analysis was perform	ned on a STLC extract	ct of the sampl	le.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers		
Cadmium			ND		0.100	1.00				
Lead			1.03	0.100 1.00						
Zinc			134		0.100	1.00				
SSP-4H-5-U		17-02-0911-9-A	02/08/17 11:30	Solid	ICP 7300	02/13/17	02/16/17 16:06	170216LA7		
Comment(s):	- The analysis was perform	ed on a STLC extract	ct of the sampl	le.				·		
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers		
Cadmium			0.446		0.100	1.00				
Lead			46.4		0.100	1.00				
SSP-4H-5-U		17-02-0911-9-A	02/08/17 11:30	Solid	ICP 7300	02/13/17	02/16/17 16:47	170216LA7		
Comment(s):	- The analysis was perform	ned on a STLC extract	ct of the sampl	le.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers		
Zinc			582		1.00	10.0				
SSP-4H-6-U		17-02-0911-10-A	02/08/17 12:30	Solid	ICP 7300	02/13/17	02/16/17 16:07	170216LA7		
Comment(s):	- The analysis was perform	ed on a STLC extract	ct of the sampl	le.						
Parameter			Result		<u>RL</u>	DF	Qua	<u>lifiers</u>		
Cadmium			0.701		0.100	1.00				
Lead			53.2		0.100	1.00				
SSP-4H-6-U		17-02-0911-10-A	02/08/17 12:30	Solid	ICP 7300	02/13/17	02/16/17 16:48	170216LA7		
Comment(s):	- The analysis was perform	ed on a STLC extra	ct of the sampl	le.						
Parameter			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>		
Zinc			672		1.00	10.0				

Terraphase I	Engineering, Inc.			Date Re	ceived:		02/10/17			
1404 Frankli	n Street, Suite 600			Work Or	der:			17-02-0911		
Oakland, CA	94612-3215			Prepara	tion:			T22.11.5. All		
				Method:				EPA 6010B		
				Units:				mg/L		
Project: ISRI	MSR Treatability Stud	y / 0102.001.004	Ļ				Pa	ge 4 of 6		
Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
SSP-4H-7-U		17-02-0911-11-A	02/08/17 13:30	Solid	ICP 7300	02/13/17	02/16/17 16:08	170216LA7		
Comment(s):	- The analysis was perform	ned on a STLC extract	ct of the samp	le.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers		
Cadmium			0.519		0.100	1.00				
Lead			45.6		0.100					
SSP-4H-7-U		17-02-0911-11-A	02/08/17 13:30	Solid	ICP 7300	02/13/17	02/16/17 16:49	170216LA7		
Comment(s):	- The analysis was performed on a STLC extract of the sample.									
Parameter			<u>Result</u>	<u>RL</u> <u>DF</u>			Qua	<u>lifiers</u>		
Zinc			881		1.00					
SSP-4H-8-U		17-02-0911-12-A	02/08/17 14:30	Solid	ICP 7300	02/13/17	02/16/17 16:12	170216LA7		
Comment(s):	- The analysis was perform	ned on a STLC extract	ct of the samp	le.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers		
Cadmium			0.425		0.100	1.00				
Lead			40.5		0.100	1.00				
SSP-4H-8-U		17-02-0911-12-A	02/08/17 14:30	Solid	ICP 7300	02/13/17	02/16/17 16:50	170216LA7		
Comment(s):	- The analysis was perform	ned on a STLC extrac	ct of the samp	le.						
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	lifiers		
Zinc			623		1.00	10.0				
SSP-4-5-H		17-02-0911-13-A	02/08/17 11:30	Solid	ICP 7300	02/13/17	02/16/17 16:13	170216LA7		
Comment(s):	- The analysis was perform	ned on a STLC extrac	ct of the samp	le.						
Parameter			<u>Result</u>		<u>RL</u>	DE	Qua	lifiers		
Cadmium			0.483		0.100	1.00				
Lead			85.3		0.100	1.00				
Zinc			461		0.100	1.00				

Terraphase Engine	eering, Inc.			Date Re	02/10/17			
1404 Franklin Stre	et, Suite 600			Work O		17-02-0911		
Oakland, CA 9461	2-3215			Prepara	tion:			T22.11.5. All
				Method:				EPA 6010B
				Units:		mg/L		
Project: ISRI MSR	Treatability Stud	y / 0102.001.004					Pa	ige 5 of 6
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SSP-4-6-H		17-02-0911-14-A	02/08/17 12:30	Solid	ICP 7300	02/13/17	02/16/17 16:14	170216LA7
Comment(s): - The	analysis was perform	ned on a STLC extrac	ct of the sample	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.796	0.100 1.00				
Lead			39.4		0.100			
SSP-4-6-H		17-02-0911-14-A	02/08/17 12:30	Solid	ICP 7300	02/13/17	02/16/17 16:52	170216LA7
Comment(s): - The	analysis was perform	ned on a STLC extrac	ct of the sample	e.				
<u>Parameter</u>			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Zinc			598		1.00	10.0		
SSP-4-7-H		17-02-0911-15-A	02/08/17 13:30	Solid	ICP 7300	02/13/17	02/16/17 16:15	170216LA7
Comment(s): - The	analysis was perform	ned on a STLC extrac	ct of the sample	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.509		0.100	1.00		
Lead			26.5		0.100	1.00		
SSP-4-7-H		17-02-0911-15-A	02/08/17 13:30	Solid	ICP 7300	02/13/17	02/16/17 16:53	170216LA7
Comment(s): - The	analysis was perform	ned on a STLC extrac	ct of the sample	e.				
Parameter Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Zinc			523		1.00	10.0		
SSP-4-8-H		17-02-0911-16-A	02/08/17 14:30	Solid	ICP 7300	02/13/17	02/16/17 16:16	170216LA7
Comment(s): - The	analysis was perform	ned on a STLC extrac	ct of the sample	e.				
<u>Parameter</u>			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Cadmium			0.449		0.100	1.00		
Lead			17.8		0.100	1.00		
SSP-4-8-H		17-02-0911-16-A	02/08/17 14:30	Solid	ICP 7300	02/13/17	02/16/17 16:54	170216LA7
Comment(s): - The	analysis was perform	ned on a STLC extrac	ct of the sample	e.				
Parameter			<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Zinc			504		1.00	10.0		

Terraphase Engineering, Inc.	Date Received:	02/10/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0911
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
	Units:	mg/L
Project: ISRI MSR Treatability Study / 0102.001.004		Page 6 of 6

Analytical Report

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-05-006-8933	N/A	Aqueous	ICP 7300	02/13/17	02/16/17 15:52	170216LA7
Parameter		<u>Result</u>	<u>RL</u>		DF	Qualif	iers
Cadmium		ND	0.1	00	1.00		
Lead		ND	0.1	00	1.00		
Zinc		ND	0.1	00	1.00		

Terraphase Engineering, Inc.	Date Received:	02/10/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0911
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Instru	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
SSP-4H-1-U	Sample		Solid	ICP 7	7300	02/13/17	02/14/17	11:47	170213S03	
SSP-4H-1-U	Matrix Spike		Solid	ICP 7	7300	02/13/17	02/14/17	11:48	170213S03	
SSP-4H-1-U	Matrix Spike I	Duplicate	Solid	ICP 7	7300	02/13/17	02/14/17	11:49	170213S03	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Cadmium	17.76	25.00	42.06	97	32.90	61	75-125	24	0-20	3,4
Lead	992.9	25.00	659.9	4X	558.8	4X	75-125	4X	0-20	Q
Zinc	9786	25.00	8375	4X	5756	4X	75-125	4X	0-20	Q

Terraphase Engineering, Inc.	Date Received:	02/10/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0911
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 2

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-02-1356-1	Sample		Aqueous	i IC	P 7300	02/16/17	02/16/17	15:54	170216SA7	
17-02-1356-1	Matrix Spike		Aqueous	i IC	P 7300	02/16/17	02/17/17	17:04	170216SA7	
17-02-1356-1	Matrix Spike I	Duplicate	Aqueous	i IC	P 7300	02/16/17	02/17/17	17:05	170216SA7	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Cadmium	ND	5.000	5.271	105	4.748	95	75-125	10	0-20	
Lead	ND	5.000	5.236	105	4.744	95	75-125	10	0-20	
Zinc	ND	5.000	5.472	109	4.929	99	75-125	10	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Sample Duplicate

Terraphase Engineering, Inc.	Date Received:	02/10/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0911
Oakland, CA 94612-3215	Preparation:	N/A
	Method:	ASTM D-2216 (M)
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
17-02-1459-1	Sample	Solid	N/A	02/18/17 00:00	02/18/17 18:00	H0218MOID2
17-02-1459-1	Sample Duplicate	Solid	N/A	02/18/17 00:00	02/18/17 18:00	H0218MOID2
Parameter		Sample Conc.	DUP Conc.	RPD	RPD CL	Qualifiers
Moisture		75.80	76.00	0	0-10	

🛟 eurofins Calscience

Terraphase Engineering, Inc.	Date Received:	02/10/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0911
Oakland, CA 94612-3215	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 1 of 2

Project: ISRI MSR Treatability Study / 0102.001.004

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed LCS Bate	ch Number
097-01-002-24334	LCS	Solid	ICP 7300	02/13/17	02/14/17 10:18 170213L	03
Parameter		Spike Added	Conc. Recovered	ed LCS %Re	ec. <u>%Rec. CL</u>	<u>Qualifiers</u>
Cadmium		25.00	24.43	98	80-120	
Lead		25.00	24.93	100	80-120	
Zinc		25.00	24.47	98	80-120	

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins Calscience

		00/10/17
Terraphase Engineering, Inc.	Date Received:	02/10/17
1404 Franklin Street, Suite 600	Work Order:	17-02-0911
Oakland, CA 94612-3215	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: ISRI MSR Treatability Study / 0102.001.004		Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed LCS Batch	Number
097-05-006-8933	LCS	Aqueous	ICP 7300	02/13/17	02/16/17 15:53 170216LA	7
Parameter		Spike Added	Conc. Recover	red LCS %Re	<u>ec. %Rec. CL</u>	<u>Qualifiers</u>
Cadmium		5.000	5.156	103	80-120	
Lead		5.000	5.110	102	80-120	
Zinc		5.000	5.440	109	80-120	

RPD: Relative Percent Difference. CL: Control Limits

Page 1 of 1

Calscience

Sample Analysis Summary Report

Work Order: 17-02-0911

Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-2216 (M)	N/A	1050	N/A	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 6010B	T22.11.5. All	935	ICP 7300	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Calscience

Work Order: 17-02-0911

Glossary of Terms and Qualifiers

Vork Order:	17-02-0911	Page 1 of 1
<u>Qualifiers</u>	Definition	
*	See applicable analysis comment.	
<	Less than the indicated value.	
>	Greater than the indicated value.	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data clarification.	was reported without further
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surr in control and, therefore, the sample data was reported without further clarification.	ogate spike compound was
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspect associated LCS recovery was in control.	cted matrix interference. The
4	The MS/MSD RPD was out of control due to suspected matrix interference.	
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix	k interference.
6	Surrogate recovery below the acceptance limit.	
7	Surrogate recovery above the acceptance limit.	
В	Analyte was present in the associated method blank.	
BU	Sample analyzed after holding time expired.	
BV	Sample received after holding time expired.	
CI	See case narrative.	
Е	Concentration exceeds the calibration range.	
ET	Sample was extracted past end of recommended max. holding time.	
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.	
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard be were also present (or detected).	ut heavier hydrocarbons
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard be also present (or detected).	ut lighter hydrocarbons were
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection lin estimated.	nit. Reported value is
JA	Analyte positively identified but quantitation is an estimate.	
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).	
ND	Parameter not detected at the indicated reporting limit.	
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample ex concentration by a factor of four or greater.	ceeding the spike
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.	
Х	% Recovery and/or RPD out-of-range.	
Z	Analyte presence was not confirmed by second column or GC/MS analysis.	
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moi reported on a wet weight basis.	sture. All QC results are
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holdin (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being stated holding time unless received at the laboratory within 15 minutes of the collection time.	g time of <= 15 minutes received outside of the

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

					5	1	Ŧ.				CH	AIN OF CUS	TODY	ð
	Calscienc	Ą					WO#/'LA	3 USE DNLY			DATE:	+1/8/-		
7440 Lincoln Way, Garden Grove, CA 928	341-1427 • (714) 89	95-5494	;	:				02-0			PAGE:)F 2	
For courier service / sample drop off infort LABORATORY CLIENT: Tarranhasa Fr	mation, contact us26	6_sales@eu	rotinsus.com	or call us.			CLIENT PF	ROJECT NAME	/ NUMBER:			P.O. NO.:		
	Buicouig						ISRI M	SR Treatab	ility Study / 0	102.001.00	ł			
ADDRESS: 1404 Fraklin Street, Suit	e 600					1	PROJECT	CONTACT:				SAMPLER(S): (P	RINT) Long un	
city: Oakland			STATE: (CA ZIP:	946	2	Emily N	Aosen: 510	.779-7179 em	iily.mosen@	terraphase.c	m Huge (rhgota	
TEL: 510-645-1850	E-MAIL:	emil	ly.mosen@te	erraphase.c	mo					REQUE	STED AN	ALYSES	0	
TURNAROUND TIME (Rush surcharges may ap	I poly to any TAT not "ST/	ANDARD"):				T			Please check	box or fill in	blank as need	ed.		Γ
] 48 HR [] 7:	2 HR	15 DAYS	M STAN	DARD	4								
					LOG CODE			9122						
SPECIAL INSTRUCTIONS:							0109	a MT						
							(0103) 9 A93)	(II-A. SA vd :						
					⊧q L∧eq	егед	A93) n' nS ,d9	22.11.5 content						
		9		ÖN	evie Iese	HIF	Cq' p' Z	R T						
USE SAMPLE ID	DATE	TIME	MATRIX	OF CONT.	nqnU Prese	bləi٦	MET Cd, P	& CC teioM						
SP-411-1-V	2/8/17 0	730	Solid		X			X						
2 SSP-4H-2-V	2/8/17 0	\$30	Solid	-	×		へ メ	X						
3 SSP-4H-3-V	2/8/17 0	930	Salid	مىروپرىنە ^ت			ト ス	XV						
4 SSP-4H-4-U	2/8/17 1	030	solid		X		$ \times $	X						
H-1-1-155	2/8/12 (0730	solid		X		X	X						
6 SSP-4-2-H	2/8/17	0830	solid	100000000	X		x X	X V						
7 55P-4-3-H	1/8/2	0930	solid	-	X		シス	X						
K SSP-4-4-H	71/8/2	(030	priles	-	×		X	X						
Relinduishedby/Signature/			_	Reo	Fedex (S	Signature//	Affiliation)	#7783	9235 4	H703)		Date: $2/q/17$	Time: 1:00 P M	Page
Relinquished by (Signature)				Reo	eived by: (bignature/	\ffiliation)			11 D.a.	X	Date: 2/10/12	Time:	2 <u>5 of</u>
Relinquished by: (Signature)				Rec	eived by: (Signature/	Affiliation)				A	Date:	Time:	29
													06/02/14 Re	vision

.

Return to Contents

		,																1			P	age 2	<u>6 of 2</u>	29	
ODY CORD		2			Huer	0							· · · · · · · · · · · · · · · · · · ·									Time: 1: 00 PM	Time:	Ime:	
N OF CUST	18/17	0	P.O. NO.:	SAMPLER(S) (PR	Matt H	LYSES														-		ate: 2/9/17	ate: 7 lin /r 7	ate:	
CHAI	DATE: 2	PAGE:	0044		en@terraphase.com	UESTED ANAI	ll in blank as needed.	······································														9 8) 0) 1/ -		
	(NUMBER: tv Studv / 0102.001.		79-7179 emily.mose	REQ	lease check box or fi															3 9235 42	NN ~	ALAN.	
	V FABUSE ONLY	V	CLIENT PROJECT NAME / I ISRI MSR Treatabili	PROJECT CONTACT:	Emily Mosen: 510-7			912	0109 V 0 6010 ((0103 A93) n2 A93) n2 ,d9 (II-A.3.11.S2 A yd fnefnod	d, Pb, Z /ET Cd, Oisture	x x x x x x x	XXX	XXX	X X X	メメメ	メイメ		XXX	メメメ		ifiliation) Icleing #778	ffiliation)	(filiation)	
1		<u></u>			94612	mo		DARD Log code:		ered sd rved	Preserve Preserve				×		×		×			ved by: (Signature/A Fedex (Tvs	ived by: (Signature/A	ived by: (Signature/A	
		or call us.			CA ZIP:	erraphase.c		X STAN			NO. OF	CONI.	-	-	_)		-	~		Rece	Rece	Rece	
		rofinsus.com			STATE:	y.mosen@t		5 DAYS			MATRIX	Salid	ki)es	Solid	Solid	Solid	Sala		Solid	Solid					
	bo) 895-5494 s26_sales@eu				emi	STANDARD"):	72 HR L			LING	1130	1230	1330	1430	1130	1230		1330	1430					
	Calsciet	341-1427 • (714) mation.contact u	ngineering	e 600		E-MAIL:	pply to any TAT not "	148 HR			SAMP	2/8/17	£1/8/2	2/8/17	71/8/17	2/8/17	218/17		2/8/17	71/8/2					
urcins		Way, Garden Grove, CA 926 ervice / sample drop off inforr	Y CLIENT: Terraphase Er	1404 Fraklin Street, Suit	land	-645-1850	VD TIME (Rush surcharges may ap	E DAY LI 24 HR L T EDF GLOBAL ID:	STRUCTIONS:		SAMPLE ID	1-3-HH0	0-9-Hh-d	U-T-HH-92	D-8-HH-d	H-5-H-J	P-4-6-H	-H+-thd.	H-7-H-9	H-8-4-0	•	MALL Holden and the state	ed tyr. (Signature)	ed by: (Signature)	ويستحدث فالجار فالمالية المالية المالية المالية محاكمه والمستحد المالية المالية المحالية المحالية المالية المالية
ں موجود موجود	» •	7440 Lincoln For courier se	LABORATOR	ADDRESS:	ciry: Oakl	TEL: 510-	TURNAROUN		SPECIAL INS		LAB	el SS	10 55	11 55	12 55	13 SS	14 SS	SS	55	16 55		Relinquis	Relinquishe	Relinquíshe	

.

.

🔅 eurofins	WORK O	RDER NUMBER:	Page 17–02	∋ 28 of 29 - <u>09 /</u>
Calscience	SAMPLE RECEIPT CHECKI	L IST co	OOLER _	<u>0</u> of <u>0</u>
CLIENT: Terraphase	55. 	DAI	re: 02 /	<u>10</u> / 2017
TEMPERATURE: (Criteria: 0.0°C – 6.0 Thermometer ID: SC3B (CF: 0.0°C); To ☑ Sample(s) outside temperature c □ Sample(s) outside temperature c □ Sample(s) received at ambient temp)°C, not frozen except sediment/tissue) emperature (w/o CF): <u>21 1</u> °C (w/ 0 riteria (PM/APM contacted by: <u>15</u>) riteria but received on ice/chilled on same erature; placed on ice for transport by co	CF): <u>21.1</u> °C; C e day of sampling purier] Blank [∃ Sample
Ambient Temperature: Air Filter		/	Checked	l by: <u>15</u>
CUSTODY SEAL:Cooler□ Present and IntactSample(s)□ Present and Intact	Present but Not Intact Present but Not Intact Not Present but Not Intact Not Present but Not Intact	ft₂ Box esent □ N/A esent □ N/A	Checked Checked	by: <u> S</u> by: <u>8776</u>
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) COC document(s) received complete	received with samples e □ Matrix □ Number of containers		Yes	No N/A
□ No analysis requested □ Not re Sampler's name indicated on COC Sample container label(s) consistent w Sample container(s) intact and in good Proper containers for analyses request Sufficient volume/mass for analyses re	linquished D No relinquished date D l ith COC condition ed quested	No relinquished time		
Aqueous samples for certain analys pH Residual Chlorine Dis Proper preservation chemical(s) noted Unpreserved aqueous sample(s) re	es received within 15-minute holding tim solved Sulfide	e		
Container(s) for certain analysis free of Volatile Organics Dissolved O Carbon Dioxide (SM 4500) DF	⁻ headspace Bases (RSK-175) □ Dissolved Oxygen errous Iron (SM 3500) □ Hydrogen Sult	(SM 4500) fide (Hach)		
Tedlar™ bag(s) free of condensation				
CONTAINER TYPE:Aqueous: \Box VOA \Box VOAh \Box VOAna \Box 125PBznna \Box 250AGB \Box 250CGB \Box 500PB \Box 1AGB \Box 1AGBna2 \Box 1ASolid: \Box 4ozCGJ \Box 8ozCGJ \Box 16ozCAir: \Box Tedlar TM \Box Canister \Box SorbenContainer:A = Amber, B = Bottle, C = ClearPreservative:b = buffered, f = filtered, h =	(Tri 100PJ □ 100PJna2 □ 125AGB □ □ 250CGBs □ 250PB □ 250PBn □ AGBs □ 1PB □ 1PBna □ □ CGJ □ Sleeve () □ EnCores [®] (t Tube □ PUF □ Other Mat ar, E = Envelope, G = Glass, J = Jar, P = Plas HCI, n = HNO3, na = NaOH, na2 = Na2S2O3, 1	ip Blank Lot Numbe] 125AGBh □ 125AG 500AGB □ 500AGJ □ □	er: 12 GBp	25PB GJs 25PB GJs 25PB GJs 25 25 25 25 25 25 25 25 25 25 25 25 25

•

1 N N N N N

💸 eurofins			WORK ORDER	NUMBER:	Pag 17–02	ge 29 of 2- 0	29 9 1/
	Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLER	<u> </u>)F_ <u>Ø</u> _
CLIENT: <u>Te</u>	maphase			DA	E: 02	10	2017
TEMPERATURE: (Crit Thermometer ID: SC3E Sample(s) outsid Sample(s) outsid Sample(s) received	teria: 0.0°C – 6.0 B (CF: 0.0°C); T le temperature c le temperature c at ambient temp	D°C, not frozen except sedime emperature (w/o CF): <u>20. C</u> riteria (PM/APM contacted by riteria but received on ice/chil perature; placed on ice for tran	ent/tissue) 2°C (w/ CF): <u>20</u> 7: <u>1 S</u>) lled on same day o nsport by courier	ົ0.O°C; ⊑ f sampling] Blank	D Sam	ple
CUSTODY SEAL: Cooler	ent and Intact	 Present but Not Intact Present but Not Intact 	2 ct 2 Box ☑ Not Present ☑ Not Present	□ N/A □ N/A	Checke	ed by:	15 26
SAMPLE CONDITION Chain-of-Custody (CO COC document(s) rece Sampling date	l: C) document(s) ∋ived complete □ Sampling time	received with samples 	ontainers		Yes	No □ □	N/A □ □
□ No analysis requ Sampler's name indica Sample container labe Sample container(s) in Proper containers for a Sufficient volume/mass Samples received with	ested	elinquished D No relinquishe	ed date □ No relin	quished time			
Aqueous samples for pH Residual Proper preservation ch Unpreserved aqueous	or certain analys Chlorine □ Dis nemical(s) noted ous sample(s) re	ses received within 15-minute ssolved Sulfide	holding time Oxygenainer				
Container(s) for certair Volatile Organics Carbon Dioxide (n analysis free o Dissolved ((SM 4500)	f headspace Gases (RSK-175) □ Dissolv Ferrous Iron (SM 3500) □ Hy	ed Oxygen (SM 45 /drogen Sulfide (Ha	00) ach)			Þ
Tedlar [™] bag(s) free of condensation □							
□ 500PB □ 1AGB □ Solid: □ 4ozCGJ □ 8 Air: □ Tedlar™ □ Cat	I 1AGB na₂ □ 1, ozCGJ □ 16oz nister □ Sorber	AGBs □ 1PB □ 1PBna □ CGJ □ Sleeve () □ Er nt Tube □ PUF □	□ nCores [®] () □ Other Matrix (□ TerraCores [®]): □	🗆	<u>e 1-5</u> 	[V]
Container: A = Amber, B Preservative: b = buffere s = H ₂ SO ₄ ,	= Bottle, C = Cle d, f = filtered, h = , u = ultra-pure, x	ar, E = Envelope, G = Glass, J = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna =	Jar, P = Plastic, and ² = Na ₂ S ₂ O ₃ , p = H ₃ P - Zn (CH ₃ CO ₂) ₂ + Na	Z = Ziploc/Res O₄, Labele OH	ealable B d/Checke Reviewe	ag ed by: ed by: _ £	816 ;87.

APPENDIX B-III PILOT STUDY DATA VALIDATION REPORTS

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-0548
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/6/2016-7/7/2016	Number of Samples: 4
Data Validation Report Date: 8/1/2016	Analytical Report Date: 7/25/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	۷	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	٧	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	۷
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 3.0 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batches 160720S02 and 160713SA1, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
Sara-1M-U	16-07-0548-1	solid	07/06/16
Sara-1-M	16-07-0548-2	solid	07/06/16

Sara-1H-U	16-07-0548-3	solid	07/07/16
Sara-1-H	16-07-0548-4	solid	07/07/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-1233
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/18/2016	Number of Samples: 2
Data Validation Report Date: 8/23/2016	Analytical Report Date: 8/2/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. No relinquish time was recorded on the COC.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For zinc in batch 160727S02, the matrix spike recovery compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-2-H	16-07-1233-1	solid	07/18/16
SARA-2H-U	16-07-1233-2	solid	07/18/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-1234
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/15/2016	Number of Samples: 2
Data Validation Report Date: 8/23/2016	Analytical Report Date: 8/2/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. No relinquish date or time was recorded on the COC.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For zinc in batch 160727S02, the matrix spike recovery compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SART-1H-U	16-07-1234-1	solid	07/15/16
SART-1-H	16-07-1234-2	solid	07/15/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-1725 (08-09-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/18/2016-7/20/2016	Number of Samples: 6
Data Validation Report Date: 9/7/2016	Analytical Report Date: 8/9/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	V
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 29.9 and 28.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

All percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-1H-U	16-07-1725-1	solid	07/18/16
SSP-1-H	16-07-1725-2	solid	07/18/16
SSP-1M-U	16-07-1725-3	solid	07/19/16
SSP-1-M	16-07-1725-4	solid	07/19/16
SSP-1L-U	16-07-1725-5	solid	07/20/16

SSP-1-L 16-07-17	25-6 Solid	07/20/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-1726
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/19/2016 – 7/22/16	Number of Samples: 8
Data Validation Report Date: 8/23/2016	Analytical Report Date: 8/9/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	۷	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	۷	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. No relinquish date or time was recorded on the COC.

SAMPLE PRESERVATION

Samples were received at a temperature of 29.4 and 28.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For zinc in batch 160804S04, the matrix spike recovery compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARB-1H-U	16-07-1726-1	solid	07/20/16
SARB-1-H	16-07-1726-2	solid	07/20/16
SARA-1L-U	16-07-1726-3	solid	07/22/16
SARA-1-L	16-07-1726-4	solid	07/22/16
SARA-2-M	16-07-1726-5	solid	07/19/16
SARA-2M-U	16-07-1726-6	solid	07/19/16
SART-2H-U	16-07-1726-7	solid	07/21/16
SART-2-H	16-07-1726-8	solid	07/21/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-1795
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/25/2016 – 7/26/16	Number of Samples: 4
Data Validation Report Date: 8/23/2016	Analytical Report Date: 8/10/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	V
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. No relinquish time was recorded on the COC.

SAMPLE PRESERVATION

Samples were received at a temperature of 29.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

All percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3M-U	16-07-1795-1	solid	07/25/16
SARA-3-M	16-07-1795-2	solid	07/25/16
SARA-2L-U	16-07-1795-3	solid	07/26/16
SARA-2-L	16-07-1795-4	solid	07/26/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-1913 (08-11-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/21/16-7/22-16	Number of Samples: 4
Data Validation Report Date: 8/26/2016	Analytical Report Date: 8/11/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	۷	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	V
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. Sample times listed on the chain of custody for SMM-1H-U and SMM-1-H do not match the sample label. The laboratory was instructed to use the sample times from the labels.

SAMPLE PRESERVATION

Samples were received at a temperature of 29.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were received and analyzed after the holding time for moisture had expired.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

All percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-1H-U	16-07-1913-1	solid	7/21/16
SMM-1-H	16-07-1913-2	solid	7/21/16
SMM-1L-U	16-07-1913-3	solid	7/22/16
SMM-1-L	16-07-1913-4	solid	7/22/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-2008 (8-12-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/06/2016 – 7/07/16	Number of Samples: 36
Data Validation Report Date: 8/23/2016	Analytical Report Date: 8/12/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. No relinquish time was recorded on the COC.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.6 and 28.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were received and analyzed after the holding time for moisture had expired.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batches 160808S02, 160808S03, 160803SA6 and 160803SA7 the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batches 160808S02 and 160808S03 recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BV-flagged and BU-flagged the following results as received and analyzed after holding time expired.

Sample Name	Analyte(s)
Sara-1M-1-U	moisture
Sara-1-1-M	moisture
Sara-1M-2-U	moisture
Sara-1-2-M	moisture
Sara-1M-3-U	moisture
Sara-1-3-M	moisture
Sara-1M-4-U	moisture
Sara-1-4-M	moisture
Sara-1M-5-U	moisture
Sara-1-5-M	moisture
Sara-1M-6-U	moisture
Sara-1-6-M	moisture
Sara-1M-7-U	moisture
Sara-1-7-M	moisture
Sara-1M-8-U	moisture
Sara-1-8-M	moisture
Sara-1M-COMP-U	moisture
Sara-1-COMP-M	moisture
Sara-1H-1-U	moisture
Sara-1-1-H	moisture
Sara-1H-2-U	moisture
Sara-1-2-H	moisture
Sara-1H-3-U	moisture
Sara-1-3-H	moisture
Sara-1H-4-U	moisture
Sara-1-4-H	moisture
Sara-1H-5-U	moisture
Sara-1-5-H	moisture
Sara-1H-6-U	moisture
Sara-1-6-H	moisture
Sara-1H-7-U	moisture
Sara-1-7-H	moisture
Sara-1H-8-U	moisture
Sara-1-8-H	moisture
Sara-1H-COMP-U	moisture
Sara-1-COMP-H	moisture

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
Sara-1M-1-U	16-07-2008-1	solid	07/06/16
Sara-1-1-M	16-07-2008-2	solid	07/06/16
Sara-1M-2-U	16-07-2008-3	solid	07/06/16
Sara-1-2-M	16-07-2008-4	solid	07/06/16
Sara-1M-3-U	16-07-2008-5	solid	07/06/16
Sara-1-3-M	16-07-2008-6	solid	07/06/16
Sara-1M-4-U	16-07-2008-7	solid	07/06/16
Sara-1-4-M	16-07-2008-8	solid	07/06/16
Sara-1M-5-U	16-07-2008-9	solid	07/06/16
Sara-1-5-M	16-07-2008-10	solid	07/06/16
Sara-1M-6-U	16-07-2008-11	solid	07/06/16
Sara-1-6-M	16-07-2008-12	solid	07/06/16
Sara-1M-7-U	16-07-2008-13	solid	07/06/16
Sara-1-7-M	16-07-2008-14	solid	07/06/16
Sara-1M-8-U	16-07-2008-15	solid	07/06/16
Sara-1-8-M	16-07-2008-16	solid	07/06/16
Sara-1M-COMP-U	16-07-2008-17	solid	07/06/16
Sara-1-COMP-M	16-07-2008-18	solid	07/06/16
Sara-1H-1-U	16-07-2008-19	solid	07/07/16
Sara-1-1-H	16-07-2008-20	solid	07/07/16
Sara-1H-2-U	16-07-2008-21	solid	07/07/16
Sara-1-2-H	16-07-2008-22	solid	07/07/16
Sara-1H-3-U	16-07-2008-23	solid	07/07/16
Sara-1-3-H	16-07-2008-24	solid	07/07/16
Sara-1H-4-U	16-07-2008-25	solid	07/07/16
Sara-1-4-H	16-07-2008-26	solid	07/07/16
Sara-1H-5-U	16-07-2008-27	solid	07/07/16
Sara-1-5-H	16-07-2008-28	solid	07/07/16
Sara-1H-6-U	16-07-2008-29	solid	07/07/16
Sara-1-6-H	16-07-2008-30	solid	07/07/16
Sara-1H-7-U	16-07-2008-31	solid	07/07/16
Sara-1-7-H	16-07-2008-32	solid	07/07/16
Sara-1H-8-U	16-07-2008-33	solid	07/07/16
Sara-1-8-H	16-07-2008-34	solid	07/07/16
Sara-1H-COMP-U	16-07-2008-35	solid	07/07/16
Sara-1-COMP-H	16-07-2008-36	solid	07/07/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-07-2008 (11-07-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/6/2016-7/7/2016	Number of Samples: 36
Data Validation Report Date: 12/1/2016	Analytical Report Date: 11/7/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	2
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.6 and 28.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160808S02 and 160808S03 recovery of the Matrix Spike Duplicate (MSD) was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)	
Sara-1-1-H	cadmium	
Sara-1H-2-U	cadmium	
Sara-1H-3-U	cadmium	
Sara-1H-5-U	cadmium	

Sara-1H-6-U	cadmium
Sara-1-6-H	cadmium
Sara-1-7-H	cadmium
Sara-1H-COMP-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
Sara-1M-1-U	16-07-2008-1	solid	07/06/16
Sara-1-1-M	16-07-2008-2	solid	07/06/16
Sara-1M-2-U	16-07-2008-3	solid	07/06/16
Sara-1-2-M	16-07-2008-4	solid	07/06/16
Sara-1M-3-U	16-07-2008-5	solid	07/06/16
Sara-1-3-M	16-07-2008-6	solid	07/06/16
Sara-1M-4-U	16-07-2008-7	solid	07/06/16
Sara-1-4-M	16-07-2008-8	solid	07/06/16
Sara-1M-5-U	16-07-2008-9	solid	07/06/16
Sara-1-5-M	16-07-2008-10	solid	07/06/16
Sara-1M-6-U	16-07-2008-11	solid	07/06/16
Sara-1-6-M	16-07-2008-12	solid	07/06/16
Sara-1M-7-U	16-07-2008-13	solid	07/06/16
Sara-1-7-M	16-07-2008-14	solid	07/06/16
Sara-1M-8-U	16-07-2008-15	solid	07/06/16
Sara-1-8-M	16-07-2008-16	solid	07/06/16
Sara-1M-COMP-U	16-07-2008-17	solid	07/06/16
Sara-1-COMP-M	16-07-2008-18	solid	07/06/16
Sara-1H-1-U	16-07-2008-19	solid	07/07/16
Sara-1-1-H	16-07-2008-20	solid	07/07/16
Sara-1H-2-U	16-07-2008-21	solid	07/07/16
Sara-1-2-H	16-07-2008-22	solid	07/07/16
Sara-1H-3-U	16-07-2008-23	solid	07/07/16
Sara-1-3-H	16-07-2008-24	solid	07/07/16
Sara-1H-4-U	16-07-2008-25	solid	07/07/16
Sara-1-4-H	16-07-2008-26	solid	07/07/16
Sara-1H-5-U	16-07-2008-27	solid	07/07/16
Sara-1-5-H	16-07-2008-28	solid	07/07/16
Sara-1H-6-U	16-07-2008-29	solid	07/07/16
Sara-1-6-H	16-07-2008-30	solid	07/07/16
Sara-1H-7-U	16-07-2008-31	solid	07/07/16
Sara-1-7-H	16-07-2008-32	solid	07/07/16
Sara-1H-8-U	16-07-2008-33	solid	07/07/16

Sara-1-8-H	16-07-2008-34	solid	07/07/16
Sara-1H-COMP-U	16-07-2008-35	solid	07/07/16
Sara-1-COMP-H	16-07-2008-36	solid	07/07/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0115 (08-15-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/25/2016-7/27/2016	Number of Samples: 6
Data Validation Report Date: 12/5/2016	Analytical Report Date: 8/15/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample time for sample -5 was listed as 1510 on the sample jar label and 1535 on COC. All other sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.0 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For zinc in batches 160811S06 and 160804SA2 and lead in batch 160804SA2, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium and lead in batch 160811S06 recovery of the matrix spike or matrix spike duplicate was out of control due to matrix interference. The associated LCS was in control. For cadmium and lead in batch 160811S06 the matrix spike duplicate relative percent difference was out of control due to suspected matrix interference. All other percent recoveries and relative percent differences for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-2-H	16-08-0115-1	solid	07/25/16
SSP-2H-U	16-08-0115-2	solid	07/25/16
SSP-2M-U	16-08-0115-3	solid	07/26/16
SSP-2-M	16-08-0115-4	solid	07/26/16
SSP-2L-U	16-08-0115-5	solid	07/27/16
SSP-2-L	16-08-0115-6	solid	07/27/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0116 (11-07-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/27/2016 – 7/29/16	Number of Samples: 6
Data Validation Report Date: 8/24/2016	Analytical Report Date: 8/16/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	
Verification of EDD to Hardcopy Data Package	۷	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160804SA2, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3H-U	16-08-0116-1	solid	7/27/16
SARA-3-H	16-08-0116-2	solid	7/27/16

SARB-2H-U	16-08-0116-3	solid	7/28/16
SARB-2-H	16-08-0116-4	solid	7/28/16
SART-3H-U	16-08-0116-5	solid	7/29/16
SART-3-H	16-08-0116-6	solid	7/29/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0295 (8-18-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/15/16	Number of Samples: 18
Data Validation Report Date: 8/24/2016	Analytical Report Date: 8/18/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	۷	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. No relinquish date or time was recorded on the COC.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were received and analyzed after the holding time for moisture had expired.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc batch 160812S06 the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160812S06 recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BV-flagged and BU-flagged the following results as received and analyzed after holding time expired.

Sample Name	Analyte(s)
SART-1H-1-U	moisture
SART-1-1-H	moisture
SART-1H-2-U	moisture
SART-1-2-H	moisture
SART-1H-3-U	moisture
SART-1-3-H	moisture
SART-1H-4-U	moisture
SART-1-4H	moisture
SART-1H-5-U	moisture
SART-1-5-H	moisture
SART-1H-6-U	moisture
SART-1-6-H	moisture
SART-1H-7-U	moisture
SART-1-7-H	moisture
SART-1H-8-U	moisture
SART-1-8-H	moisture
SART-1H-COMP-U	moisture
SART-1-COMP-U	moisture

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SART-1H-1-U	16-08-0295-1	solid	7/15/16
SART-1-1-H	16-08-0295-2	solid	7/15/16
SART-1H-2-U	16-08-0295-3	solid	7/15/16
SART-1-2-H	16-08-0295-4	solid	7/15/16
SART-1H-3-U	16-08-0295-5	solid	7/15/16
SART-1-3-H	16-08-0295-6	solid	7/15/16
SART-1H-4-U	16-08-0295-7	solid	7/15/16
SART-1-4H	16-08-0295-8	solid	7/15/16
SART-1H-5-U	16-08-0295-9	solid	7/15/16
SART-1-5-H	16-08-0295-10	solid	7/15/16
SART-1H-6-U	16-08-0295-11	solid	7/15/16
SART-1-6-H	16-08-0295-12	solid	7/15/16
SART-1H-7-U	16-08-0295-13	solid	7/15/16
SART-1-7-H	16-08-0295-14	solid	7/15/16
SART-1H-8-U	16-08-0295-15	solid	7/15/16

SART-1-8-H	16-08-0295-16	solid	7/15/16
SART-1H-COMP-U	16-08-0295-17	solid	7/15/16
SART-1-COMP-U	16-08-0295-18	solid	7/15/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0295 (11-08-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/15/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/08/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	2
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package. Sample relinquished time was not included in the COC.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160812S06 recovery of the matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SART-1H-COMP-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SART-1H-1-U	16-08-0295-1	solid	7/15/16
SART-1-1-H	16-08-0295-2	solid	7/15/16
SART-1H-2-U	16-08-0295-3	solid	7/15/16
SART-1-2-H	16-08-0295-4	solid	7/15/16
SART-1H-3-U	16-08-0295-5	solid	7/15/16
SART-1-3-H	16-08-0295-6	solid	7/15/16
SART-1H-4-U	16-08-0295-7	solid	7/15/16
SART-1-4H	16-08-0295-8	solid	7/15/16
SART-1H-5-U	16-08-0295-9	solid	7/15/16
SART-1-5-H	16-08-0295-10	solid	7/15/16
SART-1H-6-U	16-08-0295-11	solid	7/15/16
SART-1-6-H	16-08-0295-12	solid	7/15/16
SART-1H-7-U	16-08-0295-13	solid	7/15/16
SART-1-7-H	16-08-0295-14	solid	7/15/16
SART-1H-8-U	16-08-0295-15	solid	7/15/16
SART-1-8-H	16-08-0295-16	solid	7/15/16
SART-1H-COMP-U	16-08-0295-17	solid	7/15/16
SART-1-COMP-U	16-08-0295-18	solid	7/15/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0296 (08-18-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 7/28/16-7/29/16	Number of Samples: 4
Data Validation Report Date: 8/26/2016	Analytical Report Date: 8/18/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.5 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For zinc in batch 160812S05, recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-2H-U	16-08-0296-1	solid	7/28/16
SMM-2-H	16-08-0296-2	solid	7/28/16
SMM-2L-U	16-08-0296-3	solid	7/29/16

SMM-2-L	16-08-0296-4	solid	7/29/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0511 (08-22-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Jennifer Repa	Matrix: solid
Sampling Date: 8/3/16-8/4/16	Number of Samples: 4
Data Validation Report Date: 8/26/2016	Analytical Report Date: 8/22/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Laboratory sample -2 was listed as SARA-3-H on the chain of custody and SARA-3-L on the sample jar label. The laboratory was instructed to use SARA-3-L as the sample ID. All other sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.0 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead in batch 160815S02 recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. The MS/MSD RPD was out of control due to suspected matrix interference. For zinc in batch 160815S02 the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3L-U	16-08-0511-1	solid	8/3/16
SARA-3-L	16-08-0511-2	solid	8/3/16
SARB-3H-U	16-08-0511-3	solid	8/4/16
SARB-3-H	16-08-0511-4	solid	8/4/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0609 (08-22-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 8/2/16-8/3/16	Number of Samples: 4
Data Validation Report Date: 10/4/2016	Analytical Report Date: 8/22/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	V
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

All percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-3H-U	16-08-0609-1	solid	8/02/16
SMM-3-H	16-08-0609-2	solid	8/02/16
SMM-3L-U	16-08-0609-3	solid	8/03/16
SMM-3-L	16-08-0609-4	solid	8/03/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0721 (08-24-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/18/2016	Number of Samples: 18
Data Validation Report Date: 9/6/2016	Analytical Report Date: 8/24/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 27.2 and 26.4 degrees Celsius. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

All samples were received past holding time for moisture content. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead in batch 160818S07 and zinc in batch 160818S07 and 160813SA1 the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160818S07 recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SARA-2H-1-U	Moisture Content
SARA-2-1-H	Moisture Content
SARA-2H-2-U	Moisture Content
SARA-2-2-H	Moisture Content
SARA-2H-3-U	Moisture Content
SARA-2-3-H	Moisture Content
SARA-2H-4-U	Moisture Content
SARA-2-4-H	Moisture Content
SARA-2H-5-U	Moisture Content
SARA-2-5-H	Moisture Content
SARA-2H-6-U	Moisture Content
SARA-2-6-H	Moisture Content
SARA-2H-7-U	Moisture Content
SARA-2-7-H	Moisture Content
SARA-2H-8-U	Moisture Content
SARA-2-8-H	Moisture Content
SARA-2H-COMP-U	Moisture Content
SARA-2-COMP-H	Moisture Content

The laboratory has BV flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARA-2H-1-U	Moisture Content
SARA-2-1-H	Moisture Content
SARA-2H-2-U	Moisture Content
SARA-2-2-H	Moisture Content
SARA-2H-3-U	Moisture Content
SARA-2-3-H	Moisture Content
SARA-2H-4-U	Moisture Content
SARA-2-4-H	Moisture Content
SARA-2H-5-U	Moisture Content
SARA-2-5-H	Moisture Content
SARA-2H-6-U	Moisture Content
SARA-2-6-H	Moisture Content
SARA-2H-7-U	Moisture Content
SARA-2-7-H	Moisture Content
SARA-2H-8-U	Moisture Content
SARA-2-8-H	Moisture Content
SARA-2H-COMP-U	Moisture Content

SARA-2-COMP-H	Moisture Content
---------------	------------------

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-2H-1-U	16-08-0721-1	solid	7/18/16
SARA-2-1-H	16-08-0721-2	solid	7/18/16
SARA-2H-2-U	16-08-0721-3	solid	7/18/16
SARA-2-2-H	16-08-0721-4	solid	7/18/16
SARA-2H-3-U	16-08-0721-5	solid	7/18/16
SARA-2-3-H	16-08-0721-6	solid	7/18/16
SARA-2H-4-U	16-08-0721-7	solid	7/18/16
SARA-2-4-H	16-08-0721-8	solid	7/18/16
SARA-2H-5-U	16-08-0721-9	solid	7/18/16
SARA-2-5-H	16-08-0721-10	solid	7/18/16
SARA-2H-6-U	16-08-0721-11	solid	7/18/16
SARA-2-6-H	16-08-0721-12	solid	7/18/16
SARA-2H-7-U	16-08-0721-13	solid	7/18/16
SARA-2-7-H	16-08-0721-14	solid	7/18/16
SARA-2H-8-U	16-08-0721-15	solid	7/18/16
SARA-2-8-H	16-08-0721-16	solid	7/18/16
SARA-2H-COMP-U	16-08-0721-17	solid	7/18/16
SARA-2-COMP-H	16-08-0721-18	solid	7/18/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0721 (11-08-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/18/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/8/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 27.2 and 26.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160818S07 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SARA-2H-1-U	cadmium
SARA-2-1-H	cadmium
SARA-2H-2-U	cadmium
SARA-2H-3-U	cadmium

SARA-2-3-H	cadmium
SARA-2H-4-U	cadmium
SARA-2H-6-U	cadmium
SARA-2-7-H	cadmium
SARA-2H-8-U	cadmium
SARA-2H-COMP-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-2H-1-U	16-08-0721-1	solid	7/18/16
SARA-2-1-H	16-08-0721-2	solid	7/18/16
SARA-2H-2-U	16-08-0721-3	solid	7/18/16
SARA-2-2-H	16-08-0721-4	solid	7/18/16
SARA-2H-3-U	16-08-0721-5	solid	7/18/16
SARA-2-3-H	16-08-0721-6	solid	7/18/16
SARA-2H-4-U	16-08-0721-7	solid	7/18/16
SARA-2-4-H	16-08-0721-8	solid	7/18/16
SARA-2H-5-U	16-08-0721-9	solid	7/18/16
SARA-2-5-H	16-08-0721-10	solid	7/18/16
SARA-2H-6-U	16-08-0721-11	solid	7/18/16
SARA-2-6-H	16-08-0721-12	solid	7/18/16
SARA-2H-7-U	16-08-0721-13	solid	7/18/16
SARA-2-7-H	16-08-0721-14	solid	7/18/16
SARA-2H-8-U	16-08-0721-15	solid	7/18/16
SARA-2-8-H	16-08-0721-16	solid	7/18/16
SARA-2H-COMP-U	16-08-0721-17	solid	7/18/16
SARA-2-COMP-H	16-08-0721-18	solid	7/18/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-0722 (08-23-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 8/1/2016-8/5/2016	Number of Samples: 6
Data Validation Report Date: 9/7/2016	Analytical Report Date: 8/23/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	V
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 29.2 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

All percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-3-H	16-08-0722-1	solid	08/01/16
SSP-3H-U	16-08-0722-2	solid	08/01/16
SSP-3M-U	16-08-0722-3	solid	08/04/16
SSP-3-M	16-08-0722-4	solid	08/05/16
SSP-3-L	16-08-0722-5	solid	08/05/16

SSP-3L-U	16-08-0722-6	solid	08/05/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-1653 (10-05-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/20/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/08/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 27.5 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160901S08, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160901S08 recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARB-1H-1-U	Moisture Content
SARB-1-1-H	Moisture Content
SARB-1H-2-U	Moisture Content
SARB-1-2-H	Moisture Content
SARB-1H-3-U	Moisture Content
SARB-1-3-H	Moisture Content
SARB-1H-4-U	Moisture Content
SARB-1-4-H	Moisture Content
SARB-1H-5-U	Moisture Content
SARB-1-5-H	Moisture Content
SARB-1H-6-U	Moisture Content
SARB-1-6-H	Moisture Content
SARB-1H-7-U	Moisture Content
SARB-1-7-H	Moisture Content
SARB-1H-8-U	Moisture Content
SARB-1-8-H	Moisture Content
SARB-1H-COMP-U	Moisture Content
SARB-1-COMP-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SARB-1H-1-U	Moisture Content
SARB-1-1-H	Moisture Content
SARB-1H-2-U	Moisture Content
SARB-1-2-H	Moisture Content
SARB-1H-3-U	Moisture Content
SARB-1-3-H	Moisture Content
SARB-1H-4-U	Moisture Content
SARB-1-4-H	Moisture Content
SARB-1H-5-U	Moisture Content
SARB-1-5-H	Moisture Content
SARB-1H-6-U	Moisture Content
SARB-1-6-H	Moisture Content
SARB-1H-7-U	Moisture Content
SARB-1-7-H	Moisture Content
SARB-1H-8-U	Moisture Content
SARB-1-8-H	Moisture Content
SARB-1H-COMP-U	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARB-1H-1-U	16-08-1653-1	solid	7/20/16
SARB-1-1-H	16-08-1653-2	solid	7/20/16
SARB-1H-2-U	16-08-1653-3	solid	7/20/16
SARB-1-2-H	16-08-1653-4	solid	7/20/16
SARB-1H-3-U	16-08-1653-5	solid	7/20/16
SARB-1-3-H	16-08-1653-6	solid	7/20/16
SARB-1H-4-U	16-08-1653-7	solid	7/20/16
SARB-1-4-H	16-08-1653-8	solid	7/20/16
SARB-1H-5-U	16-08-1653-9	solid	7/20/16
SARB-1-5-H	16-08-1653-10	solid	7/20/16
SARB-1H-6-U	16-08-1653-11	solid	7/20/16
SARB-1-6-H	16-08-1653-12	solid	7/20/16
SARB-1H-7-U	16-08-1653-13	solid	7/20/16
SARB-1-7-H	16-08-1653-14	solid	7/20/16
SARB-1H-8-U	16-08-1653-15	solid	7/20/16
SARB-1-8-H	16-08-1653-16	solid	7/20/16
SARB-1H-COMP-U	16-08-1653-17	solid	7/20/16
SARB-1-COMP-H	16-08-1653-18	solid	7/20/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-1653 (11-08-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/20/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/08/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 27.5 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160901S08 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)		
SARB-1H-1-U	cadmium		
SARB-1-1-H	cadmium		
SARB-1H-2-U	cadmium		
SARB-1-2-H	cadmium		

SARB-1H-3-U	cadmium
SARB-1-3-H	cadmium
SARB-1H-4-U	cadmium
SARB-1-4-H	cadmium
SARB-1H-5-U	cadmium
SARB-1-5-H	cadmium
SARB-1H-6-U	cadmium
SARB-1-6-H	cadmium
SARB-1H-7-U	cadmium
SARB-1-7-H	cadmium
SARB-1H-8-U	cadmium
SARB-1-8-H	cadmium
SARB-1H-COMP-U	cadmium
SARB-1-COMP-H	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARB-1H-1-U	16-08-1653-1	solid	7/20/16
SARB-1-1-H	16-08-1653-2	solid	7/20/16
SARB-1H-2-U	16-08-1653-3	solid	7/20/16
SARB-1-2-H	16-08-1653-4	solid	7/20/16
SARB-1H-3-U	16-08-1653-5	solid	7/20/16
SARB-1-3-H	16-08-1653-6	solid	7/20/16
SARB-1H-4-U	16-08-1653-7	solid	7/20/16
SARB-1-4-H	16-08-1653-8	solid	7/20/16
SARB-1H-5-U	16-08-1653-9	solid	7/20/16
SARB-1-5-H	16-08-1653-10	solid	7/20/16
SARB-1H-6-U	16-08-1653-11	solid	7/20/16
SARB-1-6-H	16-08-1653-12	solid	7/20/16
SARB-1H-7-U	16-08-1653-13	solid	7/20/16
SARB-1-7-H	16-08-1653-14	solid	7/20/16
SARB-1H-8-U	16-08-1653-15	solid	7/20/16
SARB-1-8-H	16-08-1653-16	solid	7/20/16
SARB-1H-COMP-U	16-08-1653-17	solid	7/20/16
SARB-1-COMP-H	16-08-1653-18	solid	7/20/16

END OF REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-1661 (09-07-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/19/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/07/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160901S07 and 160829SA3 the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160901S07 Recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARA-2M-1-U	Moisture Content
SARA-2-1-M	Moisture Content
SARA-2M-2-U	Moisture Content
SARA-2-2-M	Moisture Content
SARA-2M-3-U	Moisture Content
SARA-2-3-M	Moisture Content
SARA-2M-4-U	Moisture Content
SARA-2-4-M	Moisture Content
SARA-2M-5-U	Moisture Content
SARA-2-5-M	Moisture Content
SARA-2M-6-U	Moisture Content
SARA-2-6-M	Moisture Content
SARA-2M-7-U	Moisture Content
SARA-2-7-M	Moisture Content
SARA-2M-8-U	Moisture Content
SARA-2-8-M	Moisture Content
SARA-2M-COMP-U	Moisture Content
SARA-2-COMP-M	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SARA-2M-1-U	Moisture Content
SARA-2-1-M	Moisture Content
SARA-2M-2-U	Moisture Content
SARA-2-2-M	Moisture Content
SARA-2M-3-U	Moisture Content
SARA-2-3-M	Moisture Content
SARA-2M-4-U	Moisture Content
SARA-2-4-M	Moisture Content
SARA-2M-5-U	Moisture Content
SARA-2-5-M	Moisture Content
SARA-2M-6-U	Moisture Content
SARA-2-6-M	Moisture Content
SARA-2M-7-U	Moisture Content
SARA-2-7-M	Moisture Content
SARA-2M-8-U	Moisture Content
SARA-2-8-M	Moisture Content
SARA-2M-COMP-U	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-2M-1-U	16-08-1661-1	solid	7/19/16
SARA-2-1-M	16-08-1661-2	solid	7/19/16
SARA-2M-2-U	16-08-1661-3	solid	7/19/16
SARA-2-2-M	16-08-1661-4	solid	7/19/16
SARA-2M-3-U	16-08-1661-5	solid	7/19/16
SARA-2-3-M	16-08-1661-6	solid	7/19/16
SARA-2M-4-U	16-08-1661-7	solid	7/19/16
SARA-2-4-M	16-08-1661-8	solid	7/19/16
SARA-2M-5-U	16-08-1661-9	solid	7/19/16
SARA-2-5-M	16-08-1661-10	solid	7/19/16
SARA-2M-6-U	16-08-1661-11	solid	7/19/16
SARA-2-6-M	16-08-1661-12	solid	7/19/16
SARA-2M-7-U	16-08-1661-13	solid	7/19/16
SARA-2-7-M	16-08-1661-14	solid	7/19/16
SARA-2M-8-U	16-08-1661-15	solid	7/19/16
SARA-2-8-M	16-08-1661-16	solid	7/19/16
SARA-2M-COMP-U	16-08-1661-17	solid	7/19/16
SARA-2-COMP-M	16-08-1661-18	solid	7/19/16

END OF REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-1661 (11-08-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/19/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/08/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	۷	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	2
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160901S07 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SARA-2M-1-U	cadmium
SARA-2-1-M	cadmium
SARA-2-3-M	cadmium
SARA-2-5-M	cadmium

SARA-2M-7-U	cadmium
SARA-2-COMP-M	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-2M-1-U	16-08-1661-1	solid	7/19/16
SARA-2-1-M	16-08-1661-2	solid	7/19/16
SARA-2M-2-U	16-08-1661-3	solid	7/19/16
SARA-2-2-M	16-08-1661-4	solid	7/19/16
SARA-2M-3-U	16-08-1661-5	solid	7/19/16
SARA-2-3-M	16-08-1661-6	solid	7/19/16
SARA-2M-4-U	16-08-1661-7	solid	7/19/16
SARA-2-4-M	16-08-1661-8	solid	7/19/16
SARA-2M-5-U	16-08-1661-9	solid	7/19/16
SARA-2-5-M	16-08-1661-10	solid	7/19/16
SARA-2M-6-U	16-08-1661-11	solid	7/19/16
SARA-2-6-M	16-08-1661-12	solid	7/19/16
SARA-2M-7-U	16-08-1661-13	solid	7/19/16
SARA-2-7-M	16-08-1661-14	solid	7/19/16
SARA-2M-8-U	16-08-1661-15	solid	7/19/16
SARA-2-8-M	16-08-1661-16	solid	7/19/16
SARA-2M-COMP-U	16-08-1661-17	solid	7/19/16
SARA-2-COMP-M	16-08-1661-18	solid	7/19/16

END OF REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-1973 (3-29-2017)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/18/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016; revised	Analytical Report Date: 3/29/2017
3/29/2017	

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	٧	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 24.6, 24.8, and 24.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160907S03 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SSP-1H-1-U	cadmium
SSP-1-1-H	cadmium
SSP-1H-3-U	cadmium
SSP-1H-4-U	cadmium

SSP-1-5-H	cadmium
SSP-1H-6-U	cadmium
SSP-1-6-H	cadmium
SSP-1H-7-U	cadmium
SSP-1-7-H	cadmium
SSP-1H-COMP-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-1H-1-U	16-08-1973-1	solid	7/18/16
SSP-1-1-H	16-08-1973-2	solid	7/18/16
SSP-1H-2-U	16-08-1973-3	solid	7/18/16
SSP-1-2-H	16-08-1973-4	solid	7/18/16
SSP-1H-3-U	16-08-1973-5	solid	7/18/16
SSP-1-3-H	16-08-1973-6	solid	7/18/16
SSP-1H-4-U	16-08-1973-7	solid	7/18/16
SSP-1-4-H	16-08-1973-8	solid	7/18/16
SSP-1H-5-U	16-08-1973-9	solid	7/18/16
SSP-1-5-H	16-08-1973-10	solid	7/18/16
SSP-1H-6-U	16-08-1973-11	solid	7/18/16
SSP-1-6-H	16-08-1973-12	solid	7/18/16
SSP-1H-7-U	16-08-1973-13	solid	7/18/16
SSP-1-7-H	16-08-1973-14	solid	7/18/16
SSP-1H-8-U	16-08-1973-15	solid	7/18/16
SSP-1-8-H	16-08-1973-16	solid	7/18/16
SSP-1H-COMP-U	16-08-1973-17	solid	7/18/16
SSP-1-COMP-H	16-08-1973-18	solid	7/18/16

END OF REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-1973 (09-12-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/18/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/12/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	1		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 24.6, 24.8, and 24.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

The percent recovery for zinc in the laboratory control samples of batch 160907LA1 was out of control limits. All other percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160907S03 and 160907SA1 the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160907S03 recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Terraphase Engineering Inc.

Sample Name	Analyte(s)
SSP-1H-1-U	Moisture Content
SSP-1-1-H	Moisture Content
SSP-1H-2-U	Moisture Content
SSP-1-2-H	Moisture Content
SSP-1H-3-U	Moisture Content
SSP-1-3-H	Moisture Content
SSP-1H-4-U	Moisture Content
SSP-1-4-H	Moisture Content
SSP-1H-5-U	Moisture Content
SSP-1-5-H	Moisture Content
SSP-1H-6-U	Moisture Content
SSP-1-6-H	Moisture Content
SSP-1H-7-U	Moisture Content
SSP-1-7-H	Moisture Content
SSP-1H-8-U	Moisture Content
SSP-1-8-H	Moisture Content
SSP-1H-COMP-U	Moisture Content
SSP-1-COMP-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)		
SSP-1H-1-U	Moisture Content		
SSP-1-1-H	Moisture Content		
SSP-1H-2-U	Moisture Content		
SSP-1-2-H	Moisture Content		
SSP-1H-3-U	Moisture Content		
SSP-1-3-H	Moisture Content		
SSP-1H-4-U	Moisture Content		
SSP-1-4-H	Moisture Content		
SSP-1H-5-U	Moisture Content		
SSP-1-5-H	Moisture Content		
SSP-1H-6-U	Moisture Content		
SSP-1-6-H	Moisture Content		
SSP-1H-7-U	Moisture Content		
SSP-1-7-H	Moisture Content		
SSP-1H-8-U	Moisture Content		
SSP-1-8-H	Moisture Content		
SSP-1H-COMP-U	Moisture Content		

SSP-1-COMP-H	Moisture Content
--------------	------------------

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-1H-1-U	16-08-1973-1	solid	7/18/16
SSP-1-1-H	16-08-1973-2	solid	7/18/16
SSP-1H-2-U	16-08-1973-3	solid	7/18/16
SSP-1-2-H	16-08-1973-4	solid	7/18/16
SSP-1H-3-U	16-08-1973-5	solid	7/18/16
SSP-1-3-H	16-08-1973-6	solid	7/18/16
SSP-1H-4-U	16-08-1973-7	solid	7/18/16
SSP-1-4-H	16-08-1973-8	solid	7/18/16
SSP-1H-5-U	16-08-1973-9	solid	7/18/16
SSP-1-5-H	16-08-1973-10	solid	7/18/16
SSP-1H-6-U	16-08-1973-11	solid	7/18/16
SSP-1-6-H	16-08-1973-12	solid	7/18/16
SSP-1H-7-U	16-08-1973-13	solid	7/18/16
SSP-1-7-H	16-08-1973-14	solid	7/18/16
SSP-1H-8-U	16-08-1973-15	solid	7/18/16
SSP-1-8-H	16-08-1973-16	solid	7/18/16
SSP-1H-COMP-U	16-08-1973-17	solid	7/18/16
SSP-1-COMP-H	16-08-1973-18	solid	7/18/16

END OF REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-2157 (9-14-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/21/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/14/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	
Verification of EDD to Hardcopy Data Package	۷	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	2 Matrix Spike/Matrix Spike Duplicate Sample Analyses	
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160912S03, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160912S03, recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. The matrix spike/matrix spike duplicate relative percent difference was out of control due to suspected matrix interference and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Terraphase Engineering Inc.

Sample Name	Analyte(s)		
SART-2H-1-U	Moisture Content		
SART-2-1-H	Moisture Content		
SART-2H-2-U	Moisture Content		
SART-2-2-H	Moisture Content		
SART-2H-3-U	Moisture Content		
SART-2-3-H	Moisture Content		
SART-2H-4-U	Moisture Content		
SART-2-4-H	Moisture Content		
SART-2H-5-U	Moisture Content		
SART-2-5-H	Moisture Content		
SART-2H-6-U	Moisture Content		
SART-2-6-H	Moisture Content		
SART-2H-7-U	Moisture Content		
SART-2-7-H	Moisture Content		
SART-2H-8-U	Moisture Content		
SART-2-8-H	Moisture Content		
SART-2H-Comp-U	Moisture Content		
SART-2-Comp-H	Moisture Content		

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)		
SART-2H-1-U	Moisture Content		
SART-2-1-H	Moisture Content		
SART-2H-2-U	Moisture Content		
SART-2-2-H	Moisture Content		
SART-2H-3-U	Moisture Content		
SART-2-3-H	Moisture Content		
SART-2H-4-U	Moisture Content		
SART-2-4-H	Moisture Content		
SART-2H-5-U	Moisture Content		
SART-2-5-H	Moisture Content		
SART-2H-6-U	Moisture Content		
SART-2-6-H	Moisture Content		
SART-2H-7-U	Moisture Content		
SART-2-7-H	Moisture Content		
SART-2H-8-U	Moisture Content		
SART-2-8-H	Moisture Content		
SART-2H-Comp-U	Moisture Content		

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SART-2H-1-U	16-08-2157-1	solid	7/21/16
SART-2-1-H	16-08-2157-2	solid	7/21/16
SART-2H-2-U	16-08-2157-3	solid	7/21/16
SART-2-2-H	16-08-2157-4	solid	7/21/16
SART-2H-3-U	16-08-2157-5	solid	7/21/16
SART-2-3-H	16-08-2157-6	solid	7/21/16
SART-2H-4-U	16-08-2157-7	solid	7/21/16
SART-2-4-H	16-08-2157-8	solid	7/21/16
SART-2H-5-U	16-08-2157-9	solid	7/21/16
SART-2-5-H	16-08-2157-10	solid	7/21/16
SART-2H-6-U	16-08-2157-11	solid	7/21/16
SART-2-6-H	16-08-2157-12	solid	7/21/16
SART-2H-7-U	16-08-2157-13	solid	7/21/16
SART-2-7-H	16-08-2157-14	solid	7/21/16
SART-2H-8-U	16-08-2157-15	solid	7/21/16
SART-2-8-H	16-08-2157-16	solid	7/21/16
SART-2H-Comp-U	16-08-2157-17	solid	7/21/16
SART-2-Comp-H	16-08-2157-18	solid	7/21/16

END OF REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-2157 (11-08-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/21/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/08/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160912S03 recovery of the matrix spike was out of control due to suspected matrix interference. The associated LCS recovery was in control. The matrix spike/matrix spike duplicate was out of control due to suspected matrix interference. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory did not apply any flags to this sample batch.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SART-2H-1-U	16-08-2157-1	solid	7/21/16
SART-2-1-H	16-08-2157-2	solid	7/21/16

SART-2H-2-U	16-08-2157-3	solid	7/21/16
SART-2-2-H	16-08-2157-4	solid	7/21/16
SART-2H-3-U	16-08-2157-5	solid	7/21/16
SART-2-3-H	16-08-2157-6	solid	7/21/16
SART-2H-4-U	16-08-2157-7	solid	7/21/16
SART-2-4-H	16-08-2157-8	solid	7/21/16
SART-2H-5-U	16-08-2157-9	solid	7/21/16
SART-2-5-H	16-08-2157-10	solid	7/21/16
SART-2H-6-U	16-08-2157-11	solid	7/21/16
SART-2-6-H	16-08-2157-12	solid	7/21/16
SART-2H-7-U	16-08-2157-13	solid	7/21/16
SART-2-7-H	16-08-2157-14	solid	7/21/16
SART-2H-8-U	16-08-2157-15	solid	7/21/16
SART-2-8-H	16-08-2157-16	solid	7/21/16
SART-2H-Comp-U	16-08-2157-17	solid	7/21/16
SART-2-Comp-H	16-08-2157-18	solid	7/21/16

END OF REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-2158 (09-14-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/22/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/14/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	2	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

Zinc was detected above the reporting limit in the method blank for batch 160912LA3. The laboratory has B flagged zinc in all samples because analyte were present in the associated method blank. Detected concentrations of zinc were five times the respective method blank result and were thus considered positive results. No other target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160912S04, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160912S04, recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has B flagged the following because analyte was present in the associated method blank.

Sample Name	Analyte(s)
SARA-1L-1-U	Zinc
SARA-1-1-L	Zinc
SARA-1L-2-U	Zinc
SARA-1-2-L	Zinc
SARA-1L-3-U	Zinc
SARA-1-3-L	Zinc
SARA-1L-4-U	Zinc
SARA-1-4-L	Zinc
SARA-1L-5-U	Zinc
SARA-1-5-L	Zinc
SARA-1L-6-U	Zinc
SARA-1-6-L	Zinc
SARA-1L-7-U	Zinc
SARA-1-7-L	Zinc
SARA-1L-8-U	Zinc
SARA-1-8-L	Zinc
SARA-1L-Comp-U	Zinc
SARA-1-Comp-L	Zinc

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARA-1L-1-U	Moisture Content
SARA-1-1-L	Moisture Content
SARA-1L-2-U	Moisture Content
SARA-1-2-L	Moisture Content
SARA-1L-3-U	Moisture Content
SARA-1-3-L	Moisture Content
SARA-1L-4-U	Moisture Content
SARA-1-4-L	Moisture Content
SARA-1L-5-U	Moisture Content
SARA-1-5-L	Moisture Content
SARA-1L-6-U	Moisture Content
SARA-1-6-L	Moisture Content
SARA-1L-7-U	Moisture Content
SARA-1-7-L	Moisture Content
SARA-1L-8-U	Moisture Content
SARA-1-8-L	Moisture Content
SARA-1L-Comp-U	Moisture Content

SARA-1-Comp-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)	
SARA-1L-1-U	Moisture Content	
SARA-1-1-L	Moisture Content	
SARA-1L-2-U	Moisture Content	
SARA-1-2-L	Moisture Content	
SARA-1L-3-U	Moisture Content	
SARA-1-3-L	Moisture Content	
SARA-1L-4-U	Moisture Content	
SARA-1-4-L	Moisture Content	
SARA-1L-5-U	Moisture Content	
SARA-1-5-L	Moisture Content	
SARA-1L-6-U	Moisture Content	
SARA-1-6-L	Moisture Content	
SARA-1L-7-U	Moisture Content	
SARA-1-7-L	Moisture Content	
SARA-1L-8-U	Moisture Content	
SARA-1-8-L	Moisture Content	
SARA-1L-Comp-U	Moisture Content	
SARA-1-Comp-L	Moisture Content	

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-1L-1-U	16-08-2158-1	solid	7/22/16
SARA-1-1-L	16-08-2158-2	solid	7/22/16
SARA-1L-2-U	16-08-2158-3	solid	7/22/16
SARA-1-2-L	16-08-2158-4	solid	7/22/16
SARA-1L-3-U	16-08-2158-5	solid	7/22/16
SARA-1-3-L	16-08-2158-6	solid	7/22/16
SARA-1L-4-U	16-08-2158-7	solid	7/22/16
SARA-1-4-L	16-08-2158-8	solid	7/22/16
SARA-1L-5-U	16-08-2158-9	solid	7/22/16
SARA-1-5-L	16-08-2158-10	solid	7/22/16
SARA-1L-6-U	16-08-2158-11	solid	7/22/16
SARA-1-6-L	16-08-2158-12	solid	7/22/16
SARA-1L-7-U	16-08-2158-13	solid	7/22/16

SARA-1-7-L	16-08-2158-14	solid	7/22/16
SARA-1L-8-U	16-08-2158-15	solid	7/22/16
SARA-1-8-L	16-08-2158-16	solid	7/22/16
SARA-1L-Comp-U	16-08-2158-17	solid	7/22/16
SARA-1-Comp-L	16-08-2158-18	solid	7/22/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-2158 (11-08-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/22/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/08/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	2
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 28.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160912S04 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SARA-1L-2-U	cadmium
SARA-1-3-L	cadmium
SARA-1L-4-U	cadmium
SARA-1L-7-U	cadmium

SARA-1L-Comp-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-1L-1-U	16-08-2158-1	solid	7/22/16
SARA-1-1-L	16-08-2158-2	solid	7/22/16
SARA-1L-2-U	16-08-2158-3	solid	7/22/16
SARA-1-2-L	16-08-2158-4	solid	7/22/16
SARA-1L-3-U	16-08-2158-5	solid	7/22/16
SARA-1-3-L	16-08-2158-6	solid	7/22/16
SARA-1L-4-U	16-08-2158-7	solid	7/22/16
SARA-1-4-L	16-08-2158-8	solid	7/22/16
SARA-1L-5-U	16-08-2158-9	solid	7/22/16
SARA-1-5-L	16-08-2158-10	solid	7/22/16
SARA-1L-6-U	16-08-2158-11	solid	7/22/16
SARA-1-6-L	16-08-2158-12	solid	7/22/16
SARA-1L-7-U	16-08-2158-13	solid	7/22/16
SARA-1-7-L	16-08-2158-14	solid	7/22/16
SARA-1L-8-U	16-08-2158-15	solid	7/22/16
SARA-1-8-L	16-08-2158-16	solid	7/22/16
SARA-1L-Comp-U	16-08-2158-17	solid	7/22/16
SARA-1-Comp-L	16-08-2158-18	solid	7/22/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-2246 (09-15-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/19/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/15/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	2	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 21.1 and 21.3 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

Zinc was detected above the reporting limit in the method blank for batch 160912LA5. The laboratory has B flagged zinc in all samples because analyte was present in the associated method blank. Detected concentrations of zinc were five times the respective method blank result and were thus considered

positive results. No other target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160913S06, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160913S06, recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has B flagged the following because analyte was present in the associated method blank.

Sample Name	Analyte(s)
SSP-1M-1-U	Zinc
SSP-1-1-M	Zinc
SSP-1M-2-U	Zinc
SSP-1-2-M	Zinc
SSP-1M-3-U	Zinc
SSP-1-3-M	Zinc
SSP-1M-4-U	Zinc
SSP-1-4-M	Zinc
SSP-1M-5-U	Zinc
SSP-1-5-M	Zinc
SSP-1M-6-U	Zinc
SSP-1-6-M	Zinc
SSP-1M-7-U	Zinc
SSP-1-7-M	Zinc
SSP-1M-8-U	Zinc
SSP-1-8-M	Zinc
SSP-1M-COMP-U	Zinc
SSP-1-COMP-M	Zinc

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SSP-1M-1-U	Moisture Content
SSP-1-1-M	Moisture Content
SSP-1M-2-U	Moisture Content
SSP-1-2-M	Moisture Content
SSP-1M-3-U	Moisture Content
SSP-1-3-M	Moisture Content
SSP-1M-4-U	Moisture Content
SSP-1-4-M	Moisture Content
SSP-1M-5-U	Moisture Content
SSP-1-5-M	Moisture Content
SSP-1M-6-U	Moisture Content
SSP-1-6-M	Moisture Content
SSP-1M-7-U	Moisture Content
SSP-1-7-M	Moisture Content
SSP-1M-8-U	Moisture Content
SSP-1-8-M	Moisture Content

SSP-1M-COMP-U	Moisture Content
SSP-1-COMP-M	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SSP-1M-1-U	Moisture Content
SSP-1-1-M	Moisture Content
SSP-1M-2-U	Moisture Content
SSP-1-2-M	Moisture Content
SSP-1M-3-U	Moisture Content
SSP-1-3-M	Moisture Content
SSP-1M-4-U	Moisture Content
SSP-1-4-M	Moisture Content
SSP-1M-5-U	Moisture Content
SSP-1-5-M	Moisture Content
SSP-1M-6-U	Moisture Content
SSP-1-6-M	Moisture Content
SSP-1M-7-U	Moisture Content
SSP-1-7-M	Moisture Content
SSP-1M-8-U	Moisture Content
SSP-1-8-M	Moisture Content
SSP-1M-COMP-U	Moisture Content
SSP-1-COMP-M	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-1M-1-U	16-08-2246-1	solid	7/19/16
SSP-1-1-M	16-08-2246-2	solid	7/19/16
SSP-1M-2-U	16-08-2246-3	solid	7/19/16
SSP-1-2-M	16-08-2246-4	solid	7/19/16
SSP-1M-3-U	16-08-2246-5	solid	7/19/16
SSP-1-3-M	16-08-2246-6	solid	7/19/16
SSP-1M-4-U	16-08-2246-7	solid	7/19/16
SSP-1-4-M	16-08-2246-8	solid	7/19/16
SSP-1M-5-U	16-08-2246-9	solid	7/19/16
SSP-1-5-M	16-08-2246-10	solid	7/19/16
SSP-1M-6-U	16-08-2246-11	solid	7/19/16
SSP-1-6-M	16-08-2246-12	solid	7/19/16

SSP-1M-7-U	16-08-2246-13	solid	7/19/16
SSP-1-7-M	16-08-2246-14	solid	7/19/16
SSP-1M-8-U	16-08-2246-15	solid	7/19/16
SSP-1-8-M	16-08-2246-16	solid	7/19/16
SSP-1M-COMP-U	16-08-2246-17	solid	7/19/16
SSP-1-COMP-M	16-08-2246-18	solid	7/19/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-08-2246 (11-08-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/19/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/08/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 21.1 and 21.3 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160913S06 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)	
SSP-1-2-M	cadmium	

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-1M-1-U	16-08-2246-1	solid	7/19/16
SSP-1-1-M	16-08-2246-2	solid	7/19/16
SSP-1M-2-U	16-08-2246-3	solid	7/19/16
SSP-1-2-M	16-08-2246-4	solid	7/19/16
SSP-1M-3-U	16-08-2246-5	solid	7/19/16
SSP-1-3-M	16-08-2246-6	solid	7/19/16
SSP-1M-4-U	16-08-2246-7	solid	7/19/16
SSP-1-4-M	16-08-2246-8	solid	7/19/16
SSP-1M-5-U	16-08-2246-9	solid	7/19/16
SSP-1-5-M	16-08-2246-10	solid	7/19/16
SSP-1M-6-U	16-08-2246-11	solid	7/19/16
SSP-1-6-M	16-08-2246-12	solid	7/19/16
SSP-1M-7-U	16-08-2246-13	solid	7/19/16
SSP-1-7-M	16-08-2246-14	solid	7/19/16
SSP-1M-8-U	16-08-2246-15	solid	7/19/16
SSP-1-8-M	16-08-2246-16	solid	7/19/16
SSP-1M-COMP-U	16-08-2246-17	solid	7/19/16
SSP-1-COMP-M	16-08-2246-18	solid	7/19/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0276 (09-20-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/25/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/20/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	2	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 25.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

Zinc was detected above the reporting limit in the method blank for batch 160914LA5. The laboratory has B flagged zinc in all samples because analyte was present in the associated method blank. Detected concentrations of zinc were five times the respective method blank result and were thus considered

positive results. No other target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160915S02 and 160914SA5, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160915S02, recovery of the matrix spike or matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has B flagged the following because analyte was present in the associated method blank.

Sample Name	Analyte(s)
SSP-2H-1-U	Zinc
SSP-2-2-H	Zinc
SSP-2H-2-U	Zinc
SSP-2-1-H	Zinc
SSP-2H-3-U	Zinc
SSP-2-3-H	Zinc
SSP-2H-4-U	Zinc
SSP-2-4-H	Zinc
SSP-2H-5-U	Zinc
SSP-2-5-H	Zinc
SSP-2H-6-U	Zinc
SSP-2-6-H	Zinc
SSP-2H-7-U	Zinc
SSP-2-7-H	Zinc
SSP-2H-8-U	Zinc
SSP-2-8-H	Zinc
SSP-2H-Comp-U	Zinc
SSP-2-Comp-H	Zinc

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SSP-2H-1-U	Moisture Content
SSP-2-2-H	Moisture Content
SSP-2H-2-U	Moisture Content
SSP-2-1-H	Moisture Content
SSP-2H-3-U	Moisture Content
SSP-2-3-H	Moisture Content
SSP-2H-4-U	Moisture Content
SSP-2-4-H	Moisture Content
SSP-2H-5-U	Moisture Content
SSP-2-5-H	Moisture Content
SSP-2H-6-U	Moisture Content
SSP-2-6-H	Moisture Content
SSP-2H-7-U	Moisture Content
SSP-2-7-H	Moisture Content
SSP-2H-8-U	Moisture Content
SSP-2-8-H	Moisture Content

SSP-2H-Comp-U	Moisture Content
SSP-2-Comp-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SSP-2H-1-U	Moisture Content
SSP-2-2-H	Moisture Content
SSP-2H-2-U	Moisture Content
SSP-2-1-H	Moisture Content
SSP-2H-3-U	Moisture Content
SSP-2-3-H	Moisture Content
SSP-2H-4-U	Moisture Content
SSP-2-4-H	Moisture Content
SSP-2H-5-U	Moisture Content
SSP-2-5-H	Moisture Content
SSP-2H-6-U	Moisture Content
SSP-2-6-H	Moisture Content
SSP-2H-7-U	Moisture Content
SSP-2-7-H	Moisture Content
SSP-2H-8-U	Moisture Content
SSP-2-8-H	Moisture Content
SSP-2H-Comp-U	Moisture Content
SSP-2-Comp-H	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-2H-1-U	16-09-0276-1	solid	7/25/16
SSP-2-2-H	16-09-0276-2	solid	7/25/16
SSP-2H-2-U	16-09-0276-3	solid	7/25/16
SSP-2-1-H	16-09-0276-4	solid	7/25/16
SSP-2H-3-U	16-09-0276-5	solid	7/25/16
SSP-2-3-H	16-09-0276-6	solid	7/25/16
SSP-2H-4-U	16-09-0276-7	solid	7/25/16
SSP-2-4-H	16-09-0276-8	solid	7/25/16
SSP-2H-5-U	16-09-0276-9	solid	7/25/16
SSP-2-5-H	16-09-0276-10	solid	7/25/16
SSP-2H-6-U	16-09-0276-11	solid	7/25/16
SSP-2-6-H	16-09-0276-12	solid	7/25/16

SSP-2H-7-U	16-09-0276-13	solid	7/25/16
SSP-2-7-H	16-09-0276-14	solid	7/25/16
SSP-2H-8-U	16-09-0276-15	solid	7/25/16
SSP-2-8-H	16-09-0276-16	solid	7/25/16
SSP-2H-Comp-U	16-09-0276-17	solid	7/25/16
SSP-2-Comp-H	16-09-0276-18	solid	7/25/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0276 (11-09-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/25/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 25.9 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160915S02 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SSP-2H-4-U	cadmium
SSP-2H-8-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-2H-1-U	16-09-0276-1	solid	7/25/16
SSP-2-2-H	16-09-0276-2	solid	7/25/16
SSP-2H-2-U	16-09-0276-3	solid	7/25/16
SSP-2-1-H	16-09-0276-4	solid	7/25/16
SSP-2H-3-U	16-09-0276-5	solid	7/25/16
SSP-2-3-H	16-09-0276-6	solid	7/25/16
SSP-2H-4-U	16-09-0276-7	solid	7/25/16
SSP-2-4-H	16-09-0276-8	solid	7/25/16
SSP-2H-5-U	16-09-0276-9	solid	7/25/16
SSP-2-5-H	16-09-0276-10	solid	7/25/16
SSP-2H-6-U	16-09-0276-11	solid	7/25/16
SSP-2-6-H	16-09-0276-12	solid	7/25/16
SSP-2H-7-U	16-09-0276-13	solid	7/25/16
SSP-2-7-H	16-09-0276-14	solid	7/25/16
SSP-2H-8-U	16-09-0276-15	solid	7/25/16
SSP-2-8-H	16-09-0276-16	solid	7/25/16
SSP-2H-Comp-U	16-09-0276-17	solid	7/25/16
SSP-2-Comp-H	16-09-0276-18	solid	7/25/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0277 (3-29-2017)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/21/2016	Number of Samples: 18
Data Validation Report Date: 12/6/2016; revised	Analytical Report Date: 3/29/2017
3/29/2017	

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 25.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160915S03 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)	
SMM-1H-1-U	cadmium	
SMM-1-1-H	cadmium	
SMM-1H-2-U	cadmium	
SMM-1-2-H	cadmium	

SMM-1H-3-U	cadmium
SMM-1-3-H	cadmium
SMM-1H-4-U	cadmium
SMM-1-4-H	cadmium
SMM-1H-5-U	cadmium
SMM-1-5-H	cadmium
SMM-1H-7-U	cadmium
SMM-1H-Comp-U	cadmium
SMM-1-Comp-H	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-1H-1-U	16-09-0277-1	solid	7/21/16
SMM-1-1-H	16-09-0277-2	solid	7/21/16
SMM-1H-2-U	16-09-0277-3	solid	7/21/16
SMM-1-2-H	16-09-0277-4	solid	7/21/16
SMM-1H-3-U	16-09-0277-5	solid	7/21/16
SMM-1-3-H	16-09-0277-6	solid	7/21/16
SMM-1H-4-U	16-09-0277-7	solid	7/21/16
SMM-1-4-H	16-09-0277-8	solid	7/21/16
SMM-1H-5-U	16-09-0277-9	solid	7/21/16
SMM-1-5-H	16-09-0277-10	solid	7/21/16
SMM-1H-6-U	16-09-0277-11	solid	7/21/16
SMM-1-6-H	16-09-0277-12	solid	7/21/16
SMM-1H-7-U	16-09-0277-13	solid	7/21/16
SMM-1-7-H	16-09-0277-14	solid	7/21/16
SMM-1H-8-U	16-09-0277-15	solid	7/21/16
SMM-1-8-H	16-09-0277-16	solid	7/21/16
SMM-1H-Comp-U	16-09-0277-17	solid	7/21/16
SMM-1-Comp-H	16-09-0277-18	solid	7/21/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0277 (09-21-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/21/2016	Number of Samples: 18
Data Validation Report Date: 10/4/2016	Analytical Report Date: 9/21/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 25.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160915S03, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 1609153S03, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SMM-1H-1-U	Moisture Content
SMM-1-1-H	Moisture Content
SMM-1H-2-U	Moisture Content
SMM-1-2-H	Moisture Content
SMM-1H-3-U	Moisture Content
SMM-1-3-H	Moisture Content
SMM-1H-4-U	Moisture Content
SMM-1-4-H	Moisture Content
SMM-1H-5-U	Moisture Content
SMM-1-5-H	Moisture Content
SMM-1H-6-U	Moisture Content
SMM-1-6-H	Moisture Content
SMM-1H-7-U	Moisture Content
SMM-1-7-H	Moisture Content
SMM-1H-8-U	Moisture Content
SMM-1-8-H	Moisture Content
SMM-1H-Comp-U	Moisture Content
SMM-1-Comp-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SMM-1H-1-U	Moisture Content
SMM-1-1-H	Moisture Content
SMM-1H-2-U	Moisture Content
SMM-1-2-H	Moisture Content
SMM-1H-3-U	Moisture Content
SMM-1-3-H	Moisture Content
SMM-1H-4-U	Moisture Content
SMM-1-4-H	Moisture Content
SMM-1H-5-U	Moisture Content
SMM-1-5-H	Moisture Content
SMM-1H-6-U	Moisture Content
SMM-1-6-H	Moisture Content
SMM-1H-7-U	Moisture Content
SMM-1-7-H	Moisture Content
SMM-1H-8-U	Moisture Content
SMM-1-8-H	Moisture Content
SMM-1H-Comp-U	Moisture Content

SMM-1-Comp-H	Moisture Content
--------------	------------------

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-1H-1-U	16-09-0277-1	solid	7/21/16
SMM-1-1-H	16-09-0277-2	solid	7/21/16
SMM-1H-2-U	16-09-0277-3	solid	7/21/16
SMM-1-2-H	16-09-0277-4	solid	7/21/16
SMM-1H-3-U	16-09-0277-5	solid	7/21/16
SMM-1-3-H	16-09-0277-6	solid	7/21/16
SMM-1H-4-U	16-09-0277-7	solid	7/21/16
SMM-1-4-H	16-09-0277-8	solid	7/21/16
SMM-1H-5-U	16-09-0277-9	solid	7/21/16
SMM-1-5-H	16-09-0277-10	solid	7/21/16
SMM-1H-6-U	16-09-0277-11	solid	7/21/16
SMM-1-6-H	16-09-0277-12	solid	7/21/16
SMM-1H-7-U	16-09-0277-13	solid	7/21/16
SMM-1-7-H	16-09-0277-14	solid	7/21/16
SMM-1H-8-U	16-09-0277-15	solid	7/21/16
SMM-1-8-H	16-09-0277-16	solid	7/21/16
SMM-1H-Comp-U	16-09-0277-17	solid	7/21/16
SMM-1-Comp-H	16-09-0277-18	solid	7/21/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0391 (09-22-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/22/2016	Number of Samples: 18
Data Validation Report Date: 10/5/2016	Analytical Report Date: 9/22/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	۷	Sample Duplicate Analysis	٧
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 21.9 and 22.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160916S04 and 160919SA5, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160916S04, recovery of the Matrix Spike (MS) and Matrix Spike Duplicate (MSD) compound was above control limits due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SMM-1L-1-U	Moisture Content
SMM-1-1-L	Moisture Content
SMM-1L-2-U	Moisture Content
SMM-1-2-L	Moisture Content
SMM-1L-3-U	Moisture Content
SMM-1-3-L	Moisture Content
SMM-1L-4-U	Moisture Content
SMM-1-4-L	Moisture Content
SMM-1L-5-U	Moisture Content
SMM-1-5-L	Moisture Content
SMM-1L-6-U	Moisture Content
SMM-1-6-L	Moisture Content
SMM-1L-7-U	Moisture Content
SMM-1-7-L	Moisture Content
SMM-1L-8-U	Moisture Content
SMM-1-8-L	Moisture Content
SMM-1L-COMP-U	Moisture Content
SMM-1-COMP-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SMM-1L-1-U	Moisture Content
SMM-1-1-L	Moisture Content
SMM-1L-2-U	Moisture Content
SMM-1-2-L	Moisture Content
SMM-1L-3-U	Moisture Content
SMM-1-3-L	Moisture Content
SMM-1L-4-U	Moisture Content
SMM-1-4-L	Moisture Content
SMM-1L-5-U	Moisture Content
SMM-1-5-L	Moisture Content
SMM-1L-6-U	Moisture Content
SMM-1-6-L	Moisture Content
SMM-1L-7-U	Moisture Content
SMM-1-7-L	Moisture Content
SMM-1L-8-U	Moisture Content
SMM-1-8-L	Moisture Content
SMM-1L-COMP-U	Moisture Content

SMM-1-COMP-L Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-1L-1-U	16-09-0391-1	solid	7/22/16
SMM-1-1-L	16-09-0391-2	solid	7/22/16
SMM-1L-2-U	16-09-0391-3	solid	7/22/16
SMM-1-2-L	16-09-0391-4	solid	7/22/16
SMM-1L-3-U	16-09-0391-5	solid	7/22/16
SMM-1-3-L	16-09-0391-6	solid	7/22/16
SMM-1L-4-U	16-09-0391-7	solid	7/22/16
SMM-1-4-L	16-09-0391-8	solid	7/22/16
SMM-1L-5-U	16-09-0391-9	solid	7/22/16
SMM-1-5-L	16-09-0391-10	solid	7/22/16
SMM-1L-6-U	16-09-0391-11	solid	7/22/16
SMM-1-6-L	16-09-0391-12	solid	7/22/16
SMM-1L-7-U	16-09-0391-13	solid	7/22/16
SMM-1-7-L	16-09-0391-14	solid	7/22/16
SMM-1L-8-U	16-09-0391-15	solid	7/22/16
SMM-1-8-L	16-09-0391-16	solid	7/22/16
SMM-1L-COMP-U	16-09-0391-17	solid	7/22/16
SMM-1-COMP-L	16-09-0391-18	solid	7/22/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0391 (11-09-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/22/2016	Number of Samples: 18
Data Validation Report Date: 12/6/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 21.9 and 22.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160916S04 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SMM-1L-8-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-1L-1-U	16-09-0391-1	solid	7/22/16
SMM-1-1-L	16-09-0391-2	solid	7/22/16
SMM-1L-2-U	16-09-0391-3	solid	7/22/16
SMM-1-2-L	16-09-0391-4	solid	7/22/16
SMM-1L-3-U	16-09-0391-5	solid	7/22/16
SMM-1-3-L	16-09-0391-6	solid	7/22/16
SMM-1L-4-U	16-09-0391-7	solid	7/22/16
SMM-1-4-L	16-09-0391-8	solid	7/22/16
SMM-1L-5-U	16-09-0391-9	solid	7/22/16
SMM-1-5-L	16-09-0391-10	solid	7/22/16
SMM-1L-6-U	16-09-0391-11	solid	7/22/16
SMM-1-6-L	16-09-0391-12	solid	7/22/16
SMM-1L-7-U	16-09-0391-13	solid	7/22/16
SMM-1-7-L	16-09-0391-14	solid	7/22/16
SMM-1L-8-U	16-09-0391-15	solid	7/22/16
SMM-1-8-L	16-09-0391-16	solid	7/22/16
SMM-1L-COMP-U	16-09-0391-17	solid	7/22/16
SMM-1-COMP-L	16-09-0391-18	solid	7/22/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0642 (09-26-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/25/2016	Number of Samples: 18
Data Validation Report Date: 10/3/2016	Analytical Report Date: 9/26/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	۷	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	2	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.
- NA Not applicable
- NE Not evaluated
- P Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 24.5 and 24.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

Zinc was detected above the reporting limit in the method blank for batch 160921LA4. The laboratory has B flagged zinc in all samples because analyte was present in the associated method blank. Detected concentrations of zinc were five times the respective method blank result and were thus considered positive results. No other target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160920S04 and 160921SA4, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160920S04, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has B flagged the following because analyte was present in the associated method blank.

Sample Name	Analyte(s)
SARA-3M-1-U	Zinc
SARA-3-1-M	Zinc
SARA-3M-2-U	Zinc
SARA-3-2-M	Zinc
SARA-3M-3-U	Zinc
SARA-3-3-M	Zinc
SARA-3M-4-U	Zinc
SARA-3-4-M	Zinc
SARA-3M-5-U	Zinc
SARA-3-5-M	Zinc
SARA-3M-6-U	Zinc
SARA-3-6-M	Zinc
SARA-3M-7-U	Zinc
SARA-3-7-M	Zinc
SARA-3M-8-U	Zinc
SARA-3-8-M	Zinc
SARA-3M-COMP-U	Zinc
SARA-3-COMP-M	Zinc

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARA-3M-1-U	Moisture Content
SARA-3-1-M	Moisture Content
SARA-3M-2-U	Moisture Content
SARA-3-2-M	Moisture Content
SARA-3M-3-U	Moisture Content
SARA-3-3-M	Moisture Content
SARA-3M-4-U	Moisture Content
SARA-3-4-M	Moisture Content
SARA-3M-5-U	Moisture Content
SARA-3-5-M	Moisture Content
SARA-3M-6-U	Moisture Content
SARA-3-6-M	Moisture Content
SARA-3M-7-U	Moisture Content
SARA-3-7-M	Moisture Content
SARA-3M-8-U	Moisture Content
SARA-3-8-M	Moisture Content
SARA-3M-COMP-U	Moisture Content

SARA-3-COMP-M	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SARA-3M-1-U	Moisture Content
SARA-3-1-M	Moisture Content
SARA-3M-2-U	Moisture Content
SARA-3-2-M	Moisture Content
SARA-3M-3-U	Moisture Content
SARA-3-3-M	Moisture Content
SARA-3M-4-U	Moisture Content
SARA-3-4-M	Moisture Content
SARA-3M-5-U	Moisture Content
SARA-3-5-M	Moisture Content
SARA-3M-6-U	Moisture Content
SARA-3-6-M	Moisture Content
SARA-3M-7-U	Moisture Content
SARA-3-7-M	Moisture Content
SARA-3M-8-U	Moisture Content
SARA-3-8-M	Moisture Content
SARA-3M-COMP-U	Moisture Content
SARA-3-COMP-M	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3M-1-U	16-09-0642-1	solid	7/25/16
SARA-3-1-M	16-09-0642-2	solid	7/25/16
SARA-3M-2-U	16-09-0642-3	solid	7/25/16
SARA-3-2-M	16-09-0642-4	solid	7/25/16
SARA-3M-3-U	16-09-0642-5	solid	7/25/16
SARA-3-3-M	16-09-0642-6	solid	7/25/16
SARA-3M-4-U	16-09-0642-7	solid	7/25/16
SARA-3-4-M	16-09-0642-8	solid	7/25/16
SARA-3M-5-U	16-09-0642-9	solid	7/25/16
SARA-3-5-M	16-09-0642-10	solid	7/25/16
SARA-3M-6-U	16-09-0642-11	solid	7/25/16
SARA-3-6-M	16-09-0642-12	solid	7/25/16
SARA-3M-7-U	16-09-0642-13	solid	7/25/16

SARA-3-7-M	16-09-0642-14	solid	7/25/16
SARA-3M-8-U	16-09-0642-15	solid	7/25/16
SARA-3-8-M	16-09-0642-16	solid	7/25/16
SARA-3M-COMP-U	16-09-0642-17	solid	7/25/16
SARA-3-COMP-M	16-09-0642-18	solid	7/25/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0642 (11-09-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/25/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 24.5 and 24.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160920S04 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SARA-3-2-M	cadmium
SARA-3-4-M	cadmium
SARA-3M-5-U	cadmium
SARA-3-6-M	cadmium

SARA-3M-7-U	cadmium
SARA-3M-8-U	cadmium
SARA-3M-COMP-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3M-1-U	16-09-0642-1	solid	7/25/16
SARA-3-1-M	16-09-0642-2	solid	7/25/16
SARA-3M-2-U	16-09-0642-3	solid	7/25/16
SARA-3-2-M	16-09-0642-4	solid	7/25/16
SARA-3M-3-U	16-09-0642-5	solid	7/25/16
SARA-3-3-M	16-09-0642-6	solid	7/25/16
SARA-3M-4-U	16-09-0642-7	solid	7/25/16
SARA-3-4-M	16-09-0642-8	solid	7/25/16
SARA-3M-5-U	16-09-0642-9	solid	7/25/16
SARA-3-5-M	16-09-0642-10	solid	7/25/16
SARA-3M-6-U	16-09-0642-11	solid	7/25/16
SARA-3-6-M	16-09-0642-12	solid	7/25/16
SARA-3M-7-U	16-09-0642-13	solid	7/25/16
SARA-3-7-M	16-09-0642-14	solid	7/25/16
SARA-3M-8-U	16-09-0642-15	solid	7/25/16
SARA-3-8-M	16-09-0642-16	solid	7/25/16
SARA-3M-COMP-U	16-09-0642-17	solid	7/25/16
SARA-3-COMP-M	16-09-0642-18	solid	7/25/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0739 (09-28-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/20/2016	Number of Samples: 18
Data Validation Report Date: 10/5/2016	Analytical Report Date: 9/28/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 23.5 and 23.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead, and zinc in batch 160921S03, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160921S03, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SSP-1L-1-U	Moisture Content
SSP-1-1-L	Moisture Content
SSP-1L-2-U	Moisture Content
SSP-1L-3-U	Moisture Content
SSP-1-2-L	Moisture Content
SSP-1-3-L	Moisture Content
SSP-1L-4-U	Moisture Content
SSP-1-4-L	Moisture Content
SSP-1L-5-U	Moisture Content
SSP-1-5-L	Moisture Content
SSP-1L-6-U	Moisture Content
SSP-1-6-L	Moisture Content
SSP-1L-7-U	Moisture Content
SSP-1-7-L	Moisture Content
SSP-1L-8-U	Moisture Content
SSP-1-8-L	Moisture Content
SSP-1L-COMP-U	Moisture Content
SSP-1-COMP-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SSP-1L-1-U	Moisture Content
SSP-1-1-L	Moisture Content
SSP-1L-2-U	Moisture Content
SSP-1L-3-U	Moisture Content
SSP-1-2-L	Moisture Content
SSP-1-3-L	Moisture Content
SSP-1L-4-U	Moisture Content
SSP-1-4-L	Moisture Content
SSP-1L-5-U	Moisture Content
SSP-1-5-L	Moisture Content
SSP-1L-6-U	Moisture Content
SSP-1-6-L	Moisture Content
SSP-1L-7-U	Moisture Content
SSP-1-7-L	Moisture Content
SSP-1L-8-U	Moisture Content
SSP-1-8-L	Moisture Content
SSP-1L-COMP-U	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-1L-1-U	16-09-0739-1	solid	7/20/16
SSP-1-1-L	16-09-0739-2	solid	7/20/16
SSP-1L-2-U	16-09-0739-3	solid	7/20/16
SSP-1L-3-U	16-09-0739-4	solid	7/20/16
SSP-1-2-L	16-09-0739-5	solid	7/20/16
SSP-1-3-L	16-09-0739-6	solid	7/20/16
SSP-1L-4-U	16-09-0739-7	solid	7/20/16
SSP-1-4-L	16-09-0739-8	solid	7/20/16
SSP-1L-5-U	16-09-0739-9	solid	7/20/16
SSP-1-5-L	16-09-0739-10	solid	7/20/16
SSP-1L-6-U	16-09-0739-11	solid	7/20/16
SSP-1-6-L	16-09-0739-12	solid	7/20/16
SSP-1L-7-U	16-09-0739-13	solid	7/20/16
SSP-1-7-L	16-09-0739-14	solid	7/20/16
SSP-1L-8-U	16-09-0739-15	solid	7/20/16
SSP-1-8-L	16-09-0739-16	solid	7/20/16
SSP-1L-COMP-U	16-09-0739-17	solid	7/20/16
SSP-1-COMP-L	16-09-0739-18	solid	7/20/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0739 (11-09-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/20/216	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 23.5 and 23.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160921S03 recovery of the matrix spike was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SSP-1-2-L	cadmium
SSP-1-4-L	cadmium
SSP-1-7-L	cadmium
SSP-1-COMP-L	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-1L-1-U	16-09-0739-1	solid	7/20/16
SSP-1-1-L	16-09-0739-2	solid	7/20/16
SSP-1L-2-U	16-09-0739-3	solid	7/20/16
SSP-1L-3-U	16-09-0739-4	solid	7/20/16
SSP-1-2-L	16-09-0739-5	solid	7/20/16
SSP-1-3-L	16-09-0739-6	solid	7/20/16
SSP-1L-4-U	16-09-0739-7	solid	7/20/16
SSP-1-4-L	16-09-0739-8	solid	7/20/16
SSP-1L-5-U	16-09-0739-9	solid	7/20/16
SSP-1-5-L	16-09-0739-10	solid	7/20/16
SSP-1L-6-U	16-09-0739-11	solid	7/20/16
SSP-1-6-L	16-09-0739-12	solid	7/20/16
SSP-1L-7-U	16-09-0739-13	solid	7/20/16
SSP-1-7-L	16-09-0739-14	solid	7/20/16
SSP-1L-8-U	16-09-0739-15	solid	7/20/16
SSP-1-8-L	16-09-0739-16	solid	7/20/16
SSP-1L-COMP-U	16-09-0739-17	solid	7/20/16
SSP-1-COMP-L	16-09-0739-18	solid	7/20/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0942 (09-28-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 8/04/2016	Number of Samples: 18
Data Validation Report Date: 10/5/2016	Analytical Report Date: 9/28/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 25.9 and 25.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160921S04, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160921S04, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. The matrix spike/matrix spike duplicate was out of control due to suspected matrix interferences. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Terraphase Engineering Inc.

Sample Name	Analyte(s)
SSP-3M-1-U	Moisture Content
SSP-3-1-M	Moisture Content
SSP-3M-2-U	Moisture Content
SSP-3-2-M	Moisture Content
SSP-3M-3-U	Moisture Content
SSP-3-3-M	Moisture Content
SSP-3M-4-U	Moisture Content
SSP-3-4-M	Moisture Content
SSP-3M-5-U	Moisture Content
SSP-3-5-M	Moisture Content
SSP-3M-6-U	Moisture Content
SSP-3-6-M	Moisture Content
SSP-3M-7-U	Moisture Content
SSP-3-7-M	Moisture Content
SSP-3M-8-U	Moisture Content
SSP-3-8-M	Moisture Content
SSP-3M-COMP-U	Moisture Content
SSP-3-COMP-M	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SSP-3M-1-U	Moisture Content
SSP-3-1-M	Moisture Content
SSP-3M-2-U	Moisture Content
SSP-3-2-M	Moisture Content
SSP-3M-3-U	Moisture Content
SSP-3-3-M	Moisture Content
SSP-3M-4-U	Moisture Content
SSP-3-4-M	Moisture Content
SSP-3M-5-U	Moisture Content
SSP-3-5-M	Moisture Content
SSP-3M-6-U	Moisture Content
SSP-3-6-M	Moisture Content
SSP-3M-7-U	Moisture Content
SSP-3-7-M	Moisture Content
SSP-3M-8-U	Moisture Content
SSP-3-8-M	Moisture Content
SSP-3M-COMP-U	Moisture Content

SSP-3-COMP-M	Moisture Content
--------------	------------------

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-3M-1-U	16-09-0942-1	solid	8/04/16
SSP-3-1-M	16-09-0942-2	solid	8/04/16
SSP-3M-2-U	16-09-0942-3	solid	8/04/16
SSP-3-2-M	16-09-0942-4	solid	8/04/16
SSP-3M-3-U	16-09-0942-5	solid	8/04/16
SSP-3-3-M	16-09-0942-6	solid	8/04/16
SSP-3M-4-U	16-09-0942-7	solid	8/04/16
SSP-3-4-M	16-09-0942-8	solid	8/04/16
SSP-3M-5-U	16-09-0942-9	solid	8/04/16
SSP-3-5-M	16-09-0942-10	solid	8/04/16
SSP-3M-6-U	16-09-0942-11	solid	8/04/16
SSP-3-6-M	16-09-0942-12	solid	8/04/16
SSP-3M-7-U	16-09-0942-13	solid	8/04/16
SSP-3-7-M	16-09-0942-14	solid	8/04/16
SSP-3M-8-U	16-09-0942-15	solid	8/04/16
SSP-3-8-M	16-09-0942-16	solid	8/04/16
SSP-3M-COMP-U	16-09-0942-17	solid	8/04/16
SSP-3-COMP-M	16-09-0942-18	solid	8/04/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0942 (11-09-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 8/04/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 25.9 and 25.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160921S04 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. The relative percent difference for the matrix spike/matrix spike duplicate was out of control due to suspected matrix interference. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SSP-3M-5-U	cadmium
SSP-3M-7-U	cadmium

SSP-3-COMP-M cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-3M-1-U	16-09-0942-1	solid	8/04/16
SSP-3-1-M	16-09-0942-2	solid	8/04/16
SSP-3M-2-U	16-09-0942-3	solid	8/04/16
SSP-3-2-M	16-09-0942-4	solid	8/04/16
SSP-3M-3-U	16-09-0942-5	solid	8/04/16
SSP-3-3-M	16-09-0942-6	solid	8/04/16
SSP-3M-4-U	16-09-0942-7	solid	8/04/16
SSP-3-4-M	16-09-0942-8	solid	8/04/16
SSP-3M-5-U	16-09-0942-9	solid	8/04/16
SSP-3-5-M	16-09-0942-10	solid	8/04/16
SSP-3M-6-U	16-09-0942-11	solid	8/04/16
SSP-3-6-M	16-09-0942-12	solid	8/04/16
SSP-3M-7-U	16-09-0942-13	solid	8/04/16
SSP-3-7-M	16-09-0942-14	solid	8/04/16
SSP-3M-8-U	16-09-0942-15	solid	8/04/16
SSP-3-8-M	16-09-0942-16	solid	8/04/16
SSP-3M-COMP-U	16-09-0942-17	solid	8/04/16
SSP-3-COMP-M	16-09-0942-18	solid	8/04/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1183 (09-30-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 8/05/2016	Number of Samples: 18
Data Validation Report Date: 10/5/2016	Analytical Report Date: 9/30/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 25.7 and 25.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160928S02 and 160926SA3, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160928S02, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SSP-3L-1-U	Moisture Content
SSP-3-1-L	Moisture Content
SSP-3L-2-U	Moisture Content
SSP-3-2-L	Moisture Content
SSP-3L-3-U	Moisture Content
SSP-3-3-L	Moisture Content
SSP-3L-4-U	Moisture Content
SSP-3-4-L	Moisture Content
SSP-3L-5-U	Moisture Content
SSP-3-5-L	Moisture Content
SSP-3L-6-U	Moisture Content
SSP-3-6-L	Moisture Content
SSP-3L-7-U	Moisture Content
SSP-3-7-L	Moisture Content
SSP-3L-8-U	Moisture Content
SSP-3-8-L	Moisture Content
SSP-3L-COMP-U	Moisture Content
SSP-3-COMP-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SSP-3L-1-U	Moisture Content
SSP-3-1-L	Moisture Content
SSP-3L-2-U	Moisture Content
SSP-3-2-L	Moisture Content
SSP-3L-3-U	Moisture Content
SSP-3-3-L	Moisture Content
SSP-3L-4-U	Moisture Content
SSP-3-4-L	Moisture Content
SSP-3L-5-U	Moisture Content
SSP-3-5-L	Moisture Content
SSP-3L-6-U	Moisture Content
SSP-3-6-L	Moisture Content
SSP-3L-7-U	Moisture Content
SSP-3-7-L	Moisture Content
SSP-3L-8-U	Moisture Content
SSP-3-8-L	Moisture Content

SSP-3L-COMP-U	Moisture Content
SSP-3-COMP-L	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-3L-1-U	16-09-1183-1	solid	8/05/16
SSP-3-1-L	16-09-1183-2	solid	8/05/16
SSP-3L-2-U	16-09-1183-3	solid	8/05/16
SSP-3-2-L	16-09-1183-4	solid	8/05/16
SSP-3L-3-U	16-09-1183-5	solid	8/05/16
SSP-3-3-L	16-09-1183-6	solid	8/05/16
SSP-3L-4-U	16-09-1183-7	solid	8/05/16
SSP-3-4-L	16-09-1183-8	solid	8/05/16
SSP-3L-5-U	16-09-1183-9	solid	8/05/16
SSP-3-5-L	16-09-1183-10	solid	8/05/16
SSP-3L-6-U	16-09-1183-11	solid	8/05/16
SSP-3-6-L	16-09-1183-12	solid	8/05/16
SSP-3L-7-U	16-09-1183-13	solid	8/05/16
SSP-3-7-L	16-09-1183-14	solid	8/05/16
SSP-3L-8-U	16-09-1183-15	solid	8/05/16
SSP-3-8-L	16-09-1183-16	solid	8/05/16
SSP-3L-COMP-U	16-09-1183-17	solid	8/05/16
SSP-3-COMP-L	16-09-1183-18	solid	8/05/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1183 (11-09-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 8/05/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 25.7 and 25.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160928S02 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SSP-3-6-L	cadmium
SSP-3L-8-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-3L-1-U	16-09-1183-1	solid	8/05/16
SSP-3-1-L	16-09-1183-2	solid	8/05/16
SSP-3L-2-U	16-09-1183-3	solid	8/05/16
SSP-3-2-L	16-09-1183-4	solid	8/05/16
SSP-3L-3-U	16-09-1183-5	solid	8/05/16
SSP-3-3-L	16-09-1183-6	solid	8/05/16
SSP-3L-4-U	16-09-1183-7	solid	8/05/16
SSP-3-4-L	16-09-1183-8	solid	8/05/16
SSP-3L-5-U	16-09-1183-9	solid	8/05/16
SSP-3-5-L	16-09-1183-10	solid	8/05/16
SSP-3L-6-U	16-09-1183-11	solid	8/05/16
SSP-3-6-L	16-09-1183-12	solid	8/05/16
SSP-3L-7-U	16-09-1183-13	solid	8/05/16
SSP-3-7-L	16-09-1183-14	solid	8/05/16
SSP-3L-8-U	16-09-1183-15	solid	8/05/16
SSP-3-8-L	16-09-1183-16	solid	8/05/16
SSP-3L-COMP-U	16-09-1183-17	solid	8/05/16
SSP-3-COMP-L	16-09-1183-18	solid	8/05/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1402 (10-05-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 8/01/2016	Number of Samples: 18
Data Validation Report Date: 10/5/2016	Analytical Report Date: 10/05/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 21.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160929S04, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160929S04, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SMM-3H-1-U	Moisture Content
SMM-3-1-H	Moisture Content
SMM-3H-2-U	Moisture Content
SMM-3-2-H	Moisture Content
SMM-3H-4-U	Moisture Content
SMM-3-4-H	Moisture Content
SMM-3H-3-U	Moisture Content
SMM-3-3-H	Moisture Content
SMM-3H-5-U	Moisture Content
SMM-3-5-H	Moisture Content
SMM-3H-6-U	Moisture Content
SMM-3-6-H	Moisture Content
SMM-3H-7-U	Moisture Content
SMM-3-7-H	Moisture Content
SMM-3H-8-U	Moisture Content
SMM-3-8-H	Moisture Content
SMM-3H-COMP-U	Moisture Content
SMM-3-COMP-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SMM-3H-1-U	Moisture Content
SMM-3-1-H	Moisture Content
SMM-3H-2-U	Moisture Content
SMM-3-2-H	Moisture Content
SMM-3H-4-U	Moisture Content
SMM-3-4-H	Moisture Content
SMM-3H-3-U	Moisture Content
SMM-3-3-H	Moisture Content
SMM-3H-5-U	Moisture Content
SMM-3-5-H	Moisture Content
SMM-3H-6-U	Moisture Content
SMM-3-6-H	Moisture Content
SMM-3H-7-U	Moisture Content
SMM-3-7-H	Moisture Content
SMM-3H-8-U	Moisture Content
SMM-3-8-H	Moisture Content
SMM-3H-COMP-U	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-3H-1-U	16-09-1616-1	solid	8/02/16
SMM-3-1-H	16-09-1616-2	solid	8/02/16
SMM-3H-2-U	16-09-1616-3	solid	8/02/16
SMM-3-2-H	16-09-1616-4	solid	8/02/16
SMM-3H-4-U	16-09-1616-5	solid	8/02/16
SMM-3-4-H	16-09-1616-6	solid	8/02/16
SMM-3H-3-U	16-09-1616-7	solid	8/02/16
SMM-3-3-H	16-09-1616-8	solid	8/02/16
SMM-3H-5-U	16-09-1616-9	solid	8/02/16
SMM-3-5-H	16-09-1616-10	solid	8/02/16
SMM-3H-6-U	16-09-1616-11	solid	8/02/16
SMM-3-6-H	16-09-1616-12	solid	8/02/16
SMM-3H-7-U	16-09-1616-13	solid	8/02/16
SMM-3-7-H	16-09-1616-14	solid	8/02/16
SMM-3H-8-U	16-09-1616-15	solid	8/02/16
SMM-3-8-H	16-09-1616-16	solid	8/02/16
SMM-3H-COMP-U	16-09-1616-17	solid	8/02/16
SMM-3-COMP-H	16-09-1616-18	solid	8/02/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1402 (11-09-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 8/01/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 21.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160929S04 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory did not flag any samples for this sample batch.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-3H-1-U	16-09-1616-1	solid	8/02/16
SMM-3-1-H	16-09-1616-2	solid	8/02/16
SMM-3H-2-U	16-09-1616-3	solid	8/02/16

SMM-3-2-H	16-09-1616-4	solid	8/02/16
SMM-3H-4-U	16-09-1616-5	solid	8/02/16
SMM-3-4-H	16-09-1616-6	solid	8/02/16
SMM-3H-3-U	16-09-1616-7	solid	8/02/16
SMM-3-3-H	16-09-1616-8	solid	8/02/16
SMM-3H-5-U	16-09-1616-9	solid	8/02/16
SMM-3-5-H	16-09-1616-10	solid	8/02/16
SMM-3H-6-U	16-09-1616-11	solid	8/02/16
SMM-3-6-H	16-09-1616-12	solid	8/02/16
SMM-3H-7-U	16-09-1616-13	solid	8/02/16
SMM-3-7-H	16-09-1616-14	solid	8/02/16
SMM-3H-8-U	16-09-1616-15	solid	8/02/16
SMM-3-8-H	16-09-1616-16	solid	8/02/16
SMM-3H-COMP-U	16-09-1616-17	solid	8/02/16
SMM-3-COMP-H	16-09-1616-18	solid	8/02/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1403 (10-03-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/26/2016	Number of Samples: 18
Data Validation Report Date: 10/5/2016	Analytical Report Date: 10/03/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample container for SARA-2-7-L was incorrectly labeled as SARA-2L-7-U, but was corrected by the laboratory based on sample mass data provided by Terraphase. Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 22.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 160929S05 and 160926SA5, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 160929S05, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARA-2L-1-U	Moisture Content
SARA-2-1-L	Moisture Content
SARA-2L-2-U	Moisture Content
SARA-2-2-L	Moisture Content
SARA-2L-3-U	Moisture Content
SARA-2-3-L	Moisture Content
SARA-2L-4-U	Moisture Content
SARA-2-4-L	Moisture Content
SARA-2L-5-U	Moisture Content
SARA-2-5-L	Moisture Content
SARA-2L-6-U	Moisture Content
SARA-2-6-L	Moisture Content
SARA-2L-7-U	Moisture Content
SARA-2-7-L	Moisture Content
SARA-2L-8-U	Moisture Content
SARA-2-8-L	Moisture Content
SARA-2L-COMP-U	Moisture Content
SARA-2-COMP-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SARA-2L-1-U	Moisture Content
SARA-2-1-L	Moisture Content
SARA-2L-2-U	Moisture Content
SARA-2-2-L	Moisture Content
SARA-2L-3-U	Moisture Content
SARA-2-3-L	Moisture Content
SARA-2L-4-U	Moisture Content
SARA-2-4-L	Moisture Content
SARA-2L-5-U	Moisture Content
SARA-2-5-L	Moisture Content
SARA-2L-6-U	Moisture Content
SARA-2-6-L	Moisture Content
SARA-2L-7-U	Moisture Content
SARA-2-7-L	Moisture Content
SARA-2L-8-U	Moisture Content
SARA-2-8-L	Moisture Content

SARA-2L-COMP-U	Moisture Content
SARA-2-COMP-L	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-2L-1-U	16-09-1403-1	solid	7/26/16
SARA-2-1-L	16-09-1403-2	solid	7/26/16
SARA-2L-2-U	16-09-1403-3	solid	7/26/16
SARA-2-2-L	16-09-1403-4	solid	7/26/16
SARA-2L-3-U	16-09-1403-5	solid	7/26/16
SARA-2-3-L	16-09-1403-6	solid	7/26/16
SARA-2L-4-U	16-09-1403-7	solid	7/26/16
SARA-2-4-L	16-09-1403-8	solid	7/26/16
SARA-2L-5-U	16-09-1403-9	solid	7/26/16
SARA-2-5-L	16-09-1403-10	solid	7/26/16
SARA-2L-6-U	16-09-1403-11	solid	7/26/16
SARA-2-6-L	16-09-1403-12	solid	7/26/16
SARA-2L-7-U	16-09-1403-13	solid	7/26/16
SARA-2-7-L	16-09-1403-14	solid	7/26/16
SARA-2L-8-U	16-09-1403-15	solid	7/26/16
SARA-2-8-L	16-09-1403-16	solid	7/26/16
SARA-2L-COMP-U	16-09-1403-17	solid	7/26/16
SARA-2-COMP-L	16-09-1403-18	solid	7/26/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1403 (11-09-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/26/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample container for SARA-2-7-L was incorrectly labeled as SARA-2L-7-U, but was corrected by the laboratory based on sample mass data provided by Terraphase. Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 22.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 160929S05 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SARA-2L-8-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-2L-1-U	16-09-1403-1	solid	7/26/16
SARA-2-1-L	16-09-1403-2	solid	7/26/16
SARA-2L-2-U	16-09-1403-3	solid	7/26/16
SARA-2-2-L	16-09-1403-4	solid	7/26/16
SARA-2L-3-U	16-09-1403-5	solid	7/26/16
SARA-2-3-L	16-09-1403-6	solid	7/26/16
SARA-2L-4-U	16-09-1403-7	solid	7/26/16
SARA-2-4-L	16-09-1403-8	solid	7/26/16
SARA-2L-5-U	16-09-1403-9	solid	7/26/16
SARA-2-5-L	16-09-1403-10	solid	7/26/16
SARA-2L-6-U	16-09-1403-11	solid	7/26/16
SARA-2-6-L	16-09-1403-12	solid	7/26/16
SARA-2L-7-U	16-09-1403-13	solid	7/26/16
SARA-2-7-L	16-09-1403-14	solid	7/26/16
SARA-2L-8-U	16-09-1403-15	solid	7/26/16
SARA-2-8-L	16-09-1403-16	solid	7/26/16
SARA-2L-COMP-U	16-09-1403-17	solid	7/26/16
SARA-2-COMP-L	16-09-1403-18	solid	7/26/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1616 (10-05-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 8/02/2016	Number of Samples: 18
Data Validation Report Date: 10/5/2016	Analytical Report Date: 10/05/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 26 and 26.2 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead, and zinc in batch 161001S03, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 161001S03, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SMM-3H-1-U	Moisture Content
SMM-3-1-H	Moisture Content
SMM-3H-2-U	Moisture Content
SMM-3-2-H	Moisture Content
SMM-3H-4-U	Moisture Content
SMM-3-4-H	Moisture Content
SMM-3H-3-U	Moisture Content
SMM-3-3-H	Moisture Content
SMM-3H-5-U	Moisture Content
SMM-3-5-H	Moisture Content
SMM-3H-6-U	Moisture Content
SMM-3-6-H	Moisture Content
SMM-3H-7-U	Moisture Content
SMM-3-7-H	Moisture Content
SMM-3H-8-U	Moisture Content
SMM-3-8-H	Moisture Content
SMM-3H-COMP-U	Moisture Content
SMM-3-COMP-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SMM-3H-1-U	Moisture Content
SMM-3-1-H	Moisture Content
SMM-3H-2-U	Moisture Content
SMM-3-2-H	Moisture Content
SMM-3H-4-U	Moisture Content
SMM-3-4-H	Moisture Content
SMM-3H-3-U	Moisture Content
SMM-3-3-H	Moisture Content
SMM-3H-5-U	Moisture Content
SMM-3-5-H	Moisture Content
SMM-3H-6-U	Moisture Content
SMM-3-6-H	Moisture Content
SMM-3H-7-U	Moisture Content
SMM-3-7-H	Moisture Content
SMM-3H-8-U	Moisture Content
SMM-3-8-H	Moisture Content
SMM-3H-COMP-U	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-3H-1-U	16-09-1616-1	solid	8/02/16
SMM-3-1-H	16-09-1616-2	solid	8/02/16
SMM-3H-2-U	16-09-1616-3	solid	8/02/16
SMM-3-2-H	16-09-1616-4	solid	8/02/16
SMM-3H-4-U	16-09-1616-5	solid	8/02/16
SMM-3-4-H	16-09-1616-6	solid	8/02/16
SMM-3H-3-U	16-09-1616-7	solid	8/02/16
SMM-3-3-H	16-09-1616-8	solid	8/02/16
SMM-3H-5-U	16-09-1616-9	solid	8/02/16
SMM-3-5-H	16-09-1616-10	solid	8/02/16
SMM-3H-6-U	16-09-1616-11	solid	8/02/16
SMM-3-6-H	16-09-1616-12	solid	8/02/16
SMM-3H-7-U	16-09-1616-13	solid	8/02/16
SMM-3-7-H	16-09-1616-14	solid	8/02/16
SMM-3H-8-U	16-09-1616-15	solid	8/02/16
SMM-3-8-H	16-09-1616-16	solid	8/02/16
SMM-3H-COMP-U	16-09-1616-17	solid	8/02/16
SMM-3-COMP-H	16-09-1616-18	solid	8/02/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1616 (11-09-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 8/02/2016	Number of Samples: 18
Data Validation Report Date: 12/6/2016	Analytical Report Date: 11/09/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 26.0 and 26.2 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 161001S03 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SMM-3H-2-U	cadmium
SMM-3-2-H	cadmium
SMM-3-3-H	cadmium
SMM-3H-5-U	cadmium

SMM-3-7-H	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-3H-1-U	16-09-1616-1	solid	8/02/16
SMM-3-1-H	16-09-1616-2	solid	8/02/16
SMM-3H-2-U	16-09-1616-3	solid	8/02/16
SMM-3-2-H	16-09-1616-4	solid	8/02/16
SMM-3H-4-U	16-09-1616-5	solid	8/02/16
SMM-3-4-H	16-09-1616-6	solid	8/02/16
SMM-3H-3-U	16-09-1616-7	solid	8/02/16
SMM-3-3-H	16-09-1616-8	solid	8/02/16
SMM-3H-5-U	16-09-1616-9	solid	8/02/16
SMM-3-5-H	16-09-1616-10	solid	8/02/16
SMM-3H-6-U	16-09-1616-11	solid	8/02/16
SMM-3-6-H	16-09-1616-12	solid	8/02/16
SMM-3H-7-U	16-09-1616-13	solid	8/02/16
SMM-3-7-H	16-09-1616-14	solid	8/02/16
SMM-3H-8-U	16-09-1616-15	solid	8/02/16
SMM-3-8-H	16-09-1616-16 solid		8/02/16
SMM-3H-COMP-U	16-09-1616-17	solid	8/02/16
SMM-3-COMP-H	16-09-1616-18	solid	8/02/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1736 (10-07-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/27/2016	Number of Samples: 18
Data Validation Report Date: 10/19/2016	Analytical Report Date: 10/07/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 21.9 and 21.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161004S04, the matrix spike and post digestive spike recoveries and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 161004S04, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SSP-2L-1-U	Moisture Content
SSP-2-1-L	Moisture Content
SSP-2L-2-U	Moisture Content
SSP-2-2-L	Moisture Content
SSP-2L-3-U	Moisture Content
SSP-2-3-L	Moisture Content
SSP-2L-4-U	Moisture Content
SSP-2-4-L	Moisture Content
SSP-2L-5-U	Moisture Content
SSP-2-5-L	Moisture Content
SSP-2L-6-U	Moisture Content
SSP-2-6-L	Moisture Content
SSP-2L-7-U	Moisture Content
SSP-2-7-L	Moisture Content
SSP-2L-8-U	Moisture Content
SSP-2-8-L	Moisture Content
SSP-2L-COMP-U	Moisture Content
SSP-2-COMP-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SSP-2L-1-U	Moisture Content
SSP-2-1-L	Moisture Content
SSP-2L-2-U	Moisture Content
SSP-2-2-L	Moisture Content
SSP-2L-3-U	Moisture Content
SSP-2-3-L	Moisture Content
SSP-2L-4-U	Moisture Content
SSP-2-4-L	Moisture Content
SSP-2L-5-U	Moisture Content
SSP-2-5-L	Moisture Content
SSP-2L-6-U	Moisture Content
SSP-2-6-L	Moisture Content
SSP-2L-7-U	Moisture Content
SSP-2-7-L	Moisture Content
SSP-2L-8-U	Moisture Content
SSP-2-8-L	Moisture Content

SSP-2L-COMP-U	Moisture Content
SSP-2-COMP-L	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-2L-1-U	16-09-1736-1	solid	7/27/16
SSP-2-1-L	16-09-1736-2	solid	7/27/16
SSP-2L-2-U	16-09-1736-3	solid	7/27/16
SSP-2-2-L	16-09-1736-4	solid	7/27/16
SSP-2L-3-U	16-09-1736-5	solid	7/27/16
SSP-2-3-L	16-09-1736-6	solid	7/27/16
SSP-2L-4-U	16-09-1736-7	solid	7/27/16
SSP-2-4-L	16-09-1736-8	solid	7/27/16
SSP-2L-5-U	16-09-1736-9	solid	7/27/16
SSP-2-5-L	16-09-1736-10	solid	7/27/16
SSP-2L-6-U	16-09-1736-11	solid	7/27/16
SSP-2-6-L	16-09-1736-12	solid	7/27/16
SSP-2L-7-U	16-09-1736-13	solid	7/27/16
SSP-2-7-L	16-09-1736-14	solid	7/27/16
SSP-2L-8-U	16-09-1736-15	solid	7/27/16
SSP-2-8-L	16-09-1736-16	solid	7/27/16
SSP-2L-COMP-U	16-09-1736-17	solid	7/27/16
SSP-2-COMP-L	16-09-1736-18	solid	7/27/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1736 (11-10-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/27/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/10/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 21.9 and 21.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 161004S04 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SSP-2-2-L	cadmium
SSP-2L-4-U	cadmium
SSP-2-5-L	cadmium
SSP-2-6-L	cadmium

SSP-2L-7-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-2L-1-U	16-09-1736-1	solid	7/27/16
SSP-2-1-L	16-09-1736-2	solid	7/27/16
SSP-2L-2-U	16-09-1736-3	solid	7/27/16
SSP-2-2-L	16-09-1736-4	solid	7/27/16
SSP-2L-3-U	16-09-1736-5	solid	7/27/16
SSP-2-3-L	16-09-1736-6	solid	7/27/16
SSP-2L-4-U	16-09-1736-7	solid	7/27/16
SSP-2-4-L	16-09-1736-8	solid	7/27/16
SSP-2L-5-U	16-09-1736-9	solid	7/27/16
SSP-2-5-L	16-09-1736-10	solid	7/27/16
SSP-2L-6-U	16-09-1736-11	solid	7/27/16
SSP-2-6-L	16-09-1736-12	solid	7/27/16
SSP-2L-7-U	16-09-1736-13	solid	7/27/16
SSP-2-7-L	16-09-1736-14	solid	7/27/16
SSP-2L-8-U	16-09-1736-15	solid	7/27/16
SSP-2-8-L	16-09-1736-16	solid	7/27/16
SSP-2L-COMP-U	16-09-1736-17	solid	7/27/16
SSP-2-COMP-L	16-09-1736-18	solid	7/27/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-1887 (10-05-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/28/2016	Number of Samples: 18
Data Validation Report Date: 10/19/2016	Analytical Report Date: 10/10/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 28.8 and 28.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161006S01 and 161003SA6, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in 161006S01, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SMM-2H-1-U	Moisture Content
SMM-2-1-H	Moisture Content
SMM-2H-2-U	Moisture Content
SMM-2-2-H	Moisture Content
SMM-2H-3-U	Moisture Content
SMM-2-3-H	Moisture Content
SMM-2H-4-U	Moisture Content
SMM-2-4-H	Moisture Content
SMM-2H-5-U	Moisture Content
SMM-2-5-H	Moisture Content
SMM-2H-6-U	Moisture Content
SMM-2-6-H	Moisture Content
SMM-2H-7-U	Moisture Content
SMM-2-7-H	Moisture Content
SMM-2H-8-U	Moisture Content
SMM-2-8-H	Moisture Content
SMM-2H-Comp-U	Moisture Content
SMM-2-Comp-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SMM-2H-1-U	Moisture Content
SMM-2-1-H	Moisture Content
SMM-2H-2-U	Moisture Content
SMM-2-2-H	Moisture Content
SMM-2H-3-U	Moisture Content
SMM-2-3-H	Moisture Content
SMM-2H-4-U	Moisture Content
SMM-2-4-H	Moisture Content
SMM-2H-5-U	Moisture Content
SMM-2-5-H	Moisture Content
SMM-2H-6-U	Moisture Content
SMM-2-6-H	Moisture Content
SMM-2H-7-U	Moisture Content
SMM-2-7-H	Moisture Content
SMM-2H-8-U	Moisture Content
SMM-2-8-H	Moisture Content

SMM-2H-Comp-U	Moisture Content
SMM-2-Comp-H	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-2H-1-U	16-09-1887-1	solid	7/28/16
SMM-2-1-H	16-09-1887-2	solid	7/28/16
SMM-2H-2-U	16-09-1887-3	solid	7/28/16
SMM-2-2-H	16-09-1887-4	solid	7/28/16
SMM-2H-3-U	16-09-1887-5	solid	7/28/16
SMM-2-3-H	16-09-1887-6	solid	7/28/16
SMM-2H-4-U	16-09-1887-7	solid	7/28/16
SMM-2-4-H	16-09-1887-8	solid	7/28/16
SMM-2H-5-U	16-09-1887-9	solid	7/28/16
SMM-2-5-H	16-09-1887-10	solid	7/28/16
SMM-2H-6-U	16-09-1887-11	solid	7/28/16
SMM-2-6-H	16-09-1887-12	solid	7/28/16
SMM-2H-7-U	16-09-1887-13	solid	7/28/16
SMM-2-7-H	16-09-1887-14	solid	7/28/16
SMM-2H-8-U	16-09-1887-15	solid	7/28/16
SMM-2-8-H	16-09-1887-16	solid	7/28/16
SMM-2H-Comp-U	16-09-1887-17	solid	7/28/16
SMM-2-Comp-H	16-09-1887-18	solid	7/28/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-0277 (11-10-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/28/2016	Number of Samples: 18
Data Validation Report Date: 12/6/2016	Analytical Report Date: 11/10/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 28.8 and 28.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 161006S01 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SMM-2H-1-U	cadmium
SMM-2-1-H	cadmium
SMM-2H-2-U	cadmium
SMM-2H-3-U	cadmium

SMM-2-3-H	cadmium
SMM-2H-4-U	cadmium
SMM-2-4-H	cadmium
SMM-2H-5-U	cadmium
SMM-2-5-H	cadmium
SMM-2H-6-U	cadmium
SMM-2-6-H	cadmium
SMM-2H-7-U	cadmium
SMM-2H-8-U	cadmium
SMM-2H-Comp-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-2H-1-U	16-09-1887-1	solid	7/28/16
SMM-2-1-H	16-09-1887-2	solid	7/28/16
SMM-2H-2-U	16-09-1887-3	solid	7/28/16
SMM-2-2-H	16-09-1887-4	solid	7/28/16
SMM-2H-3-U	16-09-1887-5	solid	7/28/16
SMM-2-3-H	16-09-1887-6	solid	7/28/16
SMM-2H-4-U	16-09-1887-7	solid	7/28/16
SMM-2-4-H	16-09-1887-8	solid	7/28/16
SMM-2H-5-U	16-09-1887-9	solid	7/28/16
SMM-2-5-H	16-09-1887-10	solid	7/28/16
SMM-2H-6-U	16-09-1887-11	solid	7/28/16
SMM-2-6-H	16-09-1887-12	solid	7/28/16
SMM-2H-7-U	16-09-1887-13	solid	7/28/16
SMM-2-7-H	16-09-1887-14	solid	7/28/16
SMM-2H-8-U	16-09-1887-15	solid	7/28/16
SMM-2-8-H	16-09-1887-16	solid	7/28/16
SMM-2H-Comp-U	16-09-1887-17	solid	7/28/16
SMM-2-Comp-H	16-09-1887-18	solid	7/28/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-2176 (10-17-2016)
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/26/2016	Number of Samples: 18
Data Validation Report Date: 10/19/2016	Analytical Report Date: 10/17/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 22.1 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161008S02, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 161008S02, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SSP-2M-1-U	Moisture Content
SSP-2-1-M	Moisture Content
SSP-2M-2-U	Moisture Content
SSP-2-2-M	Moisture Content
SSP-2M-3-U	Moisture Content
SSP-2-3-M	Moisture Content
SSP-2M-4-U	Moisture Content
SSP-2-4-M	Moisture Content
SSP-2M-5-U	Moisture Content
SSP-2-5-M	Moisture Content
SSP-2M-6-U	Moisture Content
SSP-2-6-M	Moisture Content
SSP-2M-7-U	Moisture Content
SSP-2-7-M	Moisture Content
SSP-2M-8-U	Moisture Content
SSP-2-8-M	Moisture Content
SSP-2M-COMP-U	Moisture Content
SSP-2-COMP-M	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SSP-2M-1-U	Moisture Content
SSP-2-1-M	Moisture Content
SSP-2M-2-U	Moisture Content
SSP-2-2-M	Moisture Content
SSP-2M-3-U	Moisture Content
SSP-2-3-M	Moisture Content
SSP-2M-4-U	Moisture Content
SSP-2-4-M	Moisture Content
SSP-2M-5-U	Moisture Content
SSP-2-5-M	Moisture Content
SSP-2M-6-U	Moisture Content
SSP-2-6-M	Moisture Content
SSP-2M-7-U	Moisture Content
SSP-2-7-M	Moisture Content
SSP-2M-8-U	Moisture Content
SSP-2-8-M	Moisture Content

SSP-2M-COMP-U	Moisture Content
SSP-2-COMP-M	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-2M-1-U	16-09-2176-1	solid	7/26/16
SSP-2-1-M	16-09-2176-2	solid	7/26/16
SSP-2M-2-U	16-09-2176-3	solid	7/26/16
SSP-2-2-M	16-09-2176-4	solid	7/26/16
SSP-2M-3-U	16-09-2176-5	solid	7/26/16
SSP-2-3-M	16-09-2176-6	solid	7/26/16
SSP-2M-4-U	16-09-2176-7	solid	7/26/16
SSP-2-4-M	16-09-2176-8	solid	7/26/16
SSP-2M-5-U	16-09-2176-9	solid	7/26/16
SSP-2-5-M	16-09-2176-10	solid	7/26/16
SSP-2M-6-U	16-09-2176-11	solid	7/26/16
SSP-2-6-M	16-09-2176-12	solid	7/26/16
SSP-2M-7-U	16-09-2176-13	solid	7/26/16
SSP-2-7-M	16-09-2176-14	solid	7/26/16
SSP-2M-8-U	16-09-2176-15	solid	7/26/16
SSP-2-8-M	16-09-2176-16	solid	7/26/16
SSP-2M-COMP-U	16-09-2176-17	solid	7/26/16
SSP-2-COMP-M	16-09-2176-18	solid	7/26/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-2176 (11-10-2016)
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/26/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/10/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 22.1 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 161008S02 recovery of the matrix spike and matrix spike duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)	
SSP-2M-2-U	cadmium	

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-2M-1-U	16-09-2176-1	solid	7/26/16
SSP-2-1-M	16-09-2176-2	solid	7/26/16
SSP-2M-2-U	16-09-2176-3	solid	7/26/16
SSP-2-2-M	16-09-2176-4	solid	7/26/16
SSP-2M-3-U	16-09-2176-5	solid	7/26/16
SSP-2-3-M	16-09-2176-6	solid	7/26/16
SSP-2M-4-U	16-09-2176-7	solid	7/26/16
SSP-2-4-M	16-09-2176-8	solid	7/26/16
SSP-2M-5-U	16-09-2176-9	solid	7/26/16
SSP-2-5-M	16-09-2176-10	solid	7/26/16
SSP-2M-6-U	16-09-2176-11	solid	7/26/16
SSP-2-6-M	16-09-2176-12	solid	7/26/16
SSP-2M-7-U	16-09-2176-13	solid	7/26/16
SSP-2-7-M	16-09-2176-14	solid	7/26/16
SSP-2M-8-U	16-09-2176-15	solid	7/26/16
SSP-2-8-M	16-09-2176-16	solid	7/26/16
SSP-2M-COMP-U	16-09-2176-17	solid	7/26/16
SSP-2-COMP-M	16-09-2176-18	solid	7/26/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-2177 (10-17-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/27/2016	Number of Samples: 18
Data Validation Report Date: 10/21/2016	Analytical Report Date: 10/17/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 22.1 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161008S03, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 161008S03, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. The matrix spike/matrix spike duplicate was out of control due to suspected matrix interferences. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

Terraphase Engineering Inc.

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARA-3H-1-U	Moisture Content
SARA-3-1-H	Moisture Content
SARA-3H-2-U	Moisture Content
SARA-3-2-H	Moisture Content
SARA-3H-3-U	Moisture Content
SARA-3-3-H	Moisture Content
SARA-3H-4-U	Moisture Content
SARA-3-4-H	Moisture Content
SARA-3H-5-U	Moisture Content
SARA-3-5-H	Moisture Content
SARA-3H-6-U	Moisture Content
SARA-3-6-H	Moisture Content
SARA-3H-7-U	Moisture Content
SARA-3-7-H	Moisture Content
SARA-3H-8-U	Moisture Content
SARA-3-8-H	Moisture Content
SARA-3H-COMP-U	Moisture Content
SARA-3-COMP-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SARA-3H-1-U	Moisture Content
SARA-3-1-H	Moisture Content
SARA-3H-2-U	Moisture Content
SARA-3-2-H	Moisture Content
SARA-3H-3-U	Moisture Content
SARA-3-3-H	Moisture Content
SARA-3H-4-U	Moisture Content
SARA-3-4-H	Moisture Content
SARA-3H-5-U	Moisture Content
SARA-3-5-H	Moisture Content
SARA-3H-6-U	Moisture Content
SARA-3-6-H	Moisture Content
SARA-3H-7-U	Moisture Content
SARA-3-7-H	Moisture Content
SARA-3H-8-U	Moisture Content
SARA-3-8-H	Moisture Content

SARA-3H-COMP-U	Moisture Content
SARA-3-COMP-H	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3H-1-U	16-09-2177-1	solid	7/27/16
SARA-3-1-H	16-09-2177-2	solid	7/27/16
SARA-3H-2-U	16-09-2177-3	solid	7/27/16
SARA-3-2-H	16-09-2177-4	solid	7/27/16
SARA-3H-3-U	16-09-2177-5	solid	7/27/16
SARA-3-3-H	16-09-2177-6	solid	7/27/16
SARA-3H-4-U	16-09-2177-7	solid	7/27/16
SARA-3-4-H	16-09-2177-8	solid	7/27/16
SARA-3H-5-U	16-09-2177-9	solid	7/27/16
SARA-3-5-H	16-09-2177-10	solid	7/27/16
SARA-3H-6-U	16-09-2177-11	solid	7/27/16
SARA-3-6-H	16-09-2177-12	solid	7/27/16
SARA-3H-7-U	16-09-2177-13	solid	7/27/16
SARA-3-7-H	16-09-2177-14	solid	7/27/16
SARA-3H-8-U	16-09-2177-15	solid	7/27/16
SARA-3-8-H	16-09-2177-16	solid	7/27/16
SARA-3H-COMP-U	16-09-2177-17	solid	7/27/16
SARA-3-COMP-H	16-09-2177-18	solid	7/27/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-09-2177 (11-10-2016)
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: solid
Sampling Date: 7/27/2016	Number of Samples: 18
Data Validation Report Date: 12/5/2016	Analytical Report Date: 11/10/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	NA
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 22.1 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

Sample duplicate analysis was not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For cadmium in batch 161008S03, recovery of the matrix spike and matrix spike duplicate compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. The matrix spike/matrix spike duplicate RPD was out of control due to suspected matrix interference. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has J flagged the following results as analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Sample Name	Analyte(s)
SARA-3H-1-U	cadmium
SARA-3H-2-U	cadmium

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3H-1-U	16-09-2177-1	solid	7/27/16
SARA-3-1-H	16-09-2177-2	solid	7/27/16
SARA-3H-2-U	16-09-2177-3	solid	7/27/16
SARA-3-2-H	16-09-2177-4	solid	7/27/16
SARA-3H-3-U	16-09-2177-5	solid	7/27/16
SARA-3-3-H	16-09-2177-6	solid	7/27/16
SARA-3H-4-U	16-09-2177-7	solid	7/27/16
SARA-3-4-H	16-09-2177-8	solid	7/27/16
SARA-3H-5-U	16-09-2177-9	solid	7/27/16
SARA-3-5-H	16-09-2177-10	solid	7/27/16
SARA-3H-6-U	16-09-2177-11	solid	7/27/16
SARA-3-6-H	16-09-2177-12	solid	7/27/16
SARA-3H-7-U	16-09-2177-13	solid	7/27/16
SARA-3-7-H	16-09-2177-14	solid	7/27/16
SARA-3H-8-U	16-09-2177-15	solid	7/27/16
SARA-3-8-H	16-09-2177-16	solid	7/27/16
SARA-3H-COMP-U	16-09-2177-17	solid	7/27/16
SARA-3-COMP-H	16-09-2177-18	solid	7/27/16

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-10-0022
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/29/2016	Number of Samples: 18
Data Validation Report Date: 10/20/2016	Analytical Report Date: 10/20/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 25.4 and 25.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161012S06, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SART-3H-1-U	Moisture Content
SART-3-1-H	Moisture Content
SART-3H-2-U	Moisture Content
SART-3-2-H	Moisture Content
SART-3H-3-U	Moisture Content
SART-3-3-H	Moisture Content
SART-3H-4-U	Moisture Content
SART-3-4-H	Moisture Content
SART-3H-5-U	Moisture Content
SART-3-5-H	Moisture Content
SART-3H-6-U	Moisture Content
SART-3-6-H	Moisture Content
SART-3H-7-U	Moisture Content
SART-3-7-H	Moisture Content
SART-3H-8-U	Moisture Content
SART-3-8-H	Moisture Content
SART-3H-COMP-U	Moisture Content
SART-3-COMP-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SART-3H-1-U	Moisture Content
SART-3-1-H	Moisture Content
SART-3H-2-U	Moisture Content
SART-3-2-H	Moisture Content
SART-3H-3-U	Moisture Content
SART-3-3-H	Moisture Content
SART-3H-4-U	Moisture Content
SART-3-4-H	Moisture Content
SART-3H-5-U	Moisture Content
SART-3-5-H	Moisture Content
SART-3H-6-U	Moisture Content
SART-3-6-H	Moisture Content
SART-3H-7-U	Moisture Content
SART-3-7-H	Moisture Content
SART-3H-8-U	Moisture Content
SART-3-8-H	Moisture Content
SART-3H-COMP-U	Moisture Content

SART-3-COMP-H	Moisture Content
---------------	------------------

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SART-3H-1-U	16-10-0022-1	solid	7/29/16
SART-3-1-H	16-10-0022-2	solid	7/29/16
SART-3H-2-U	16-10-0022-3	solid	7/29/16
SART-3-2-H	16-10-0022-4	solid	7/29/16
SART-3H-3-U	16-10-0022-5	solid	7/29/16
SART-3-3-H	16-10-0022-6	solid	7/29/16
SART-3H-4-U	16-10-0022-7	solid	7/29/16
SART-3-4-H	16-10-0022-8	solid	7/29/16
SART-3H-5-U	16-10-0022-9	solid	7/29/16
SART-3-5-H	16-10-0022-10	solid	7/29/16
SART-3H-6-U	16-10-0022-11	solid	7/29/16
SART-3-6-H	16-10-0022-12	solid	7/29/16
SART-3H-7-U	16-10-0022-13	solid	7/29/16
SART-3-7-H	16-10-0022-14	solid	7/29/16
SART-3H-8-U	16-10-0022-15	solid	7/29/16
SART-3-8-H	16-10-0022-16	solid	7/29/16
SART-3H-COMP-U	16-10-0022-17	solid	7/29/16
SART-3-COMP-H	16-10-0022-18	solid	7/29/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-10-0023
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/28/2016	Number of Samples: 18
Data Validation Report Date: 10/21/2016	Analytical Report Date: 10/20/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 25.6, 25.9 and 25.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead in batch 161012S05 and zinc in batch 161012S05 and 161012SA3, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SARB-2H-1-U	Moisture Content
SARB-2-1-H	Moisture Content
SARB-2H-2-U	Moisture Content
SARB-2-2-H	Moisture Content
SARB-2H-3-U	Moisture Content
SARB-2-3-H	Moisture Content
SARB-2H-4-U	Moisture Content
SARB-2-4-H	Moisture Content
SARB-2H-5-U	Moisture Content
SARB-2-5-H	Moisture Content
SARB-2H-6-U	Moisture Content
SARB-2-6-H	Moisture Content
SARB-2H-7-U	Moisture Content
SARB-2-7-H	Moisture Content
SARB-2H-8-U	Moisture Content
SARB-2-8-H	Moisture Content
SARB-2H-COMP-U	Moisture Content
SARB-2-COMP-H	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SARB-2H-1-U	Moisture Content
SARB-2-1-H	Moisture Content
SARB-2H-2-U	Moisture Content
SARB-2-2-H	Moisture Content
SARB-2H-3-U	Moisture Content
SARB-2-3-H	Moisture Content
SARB-2H-4-U	Moisture Content
SARB-2-4-H	Moisture Content
SARB-2H-5-U	Moisture Content
SARB-2-5-H	Moisture Content
SARB-2H-6-U	Moisture Content
SARB-2-6-H	Moisture Content
SARB-2H-7-U	Moisture Content
SARB-2-7-H	Moisture Content
SARB-2H-8-U	Moisture Content
SARB-2-8-H	Moisture Content
SARB-2H-COMP-U	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARB-2H-1-U	16-10-0023-1	solid	7/28/16
SARB-2-1-H	16-10-0023-2	solid	7/28/16
SARB-2H-2-U	16-10-0023-3	solid	7/28/16
SARB-2-2-H	16-10-0023-4	solid	7/28/16
SARB-2H-3-U	16-10-0023-5	solid	7/28/16
SARB-2-3-H	16-10-0023-6	solid	7/28/16
SARB-2H-4-U	16-10-0023-7	solid	7/28/16
SARB-2-4-H	16-10-0023-8	solid	7/28/16
SARB-2H-5-U	16-10-0023-9	solid	7/28/16
SARB-2-5-H	16-10-0023-10	solid	7/28/16
SARB-2H-6-U	16-10-0023-11	solid	7/28/16
SARB-2-6-H	16-10-0023-12	solid	7/28/16
SARB-2H-7-U	16-10-0023-13	solid	7/28/16
SARB-2-7-H	16-10-0023-14	solid	7/28/16
SARB-2H-8-U	16-10-0023-15	solid	7/28/16
SARB-2-8-H	16-10-0023-16	solid	7/28/16
SARB-2H-COMP-U	16-10-0023-17	solid	7/28/16
SARB-2-COMP-H	16-10-0023-18	solid	7/28/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-10-0559
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 8/03/2016	Number of Samples: 18
Data Validation Report Date: 10/21/2016	Analytical Report Date: 10/21/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 27.3 and 27.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161018S04, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 161018S04 recovery of the Matrix Spike and Matrix Spike Duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SMM-3L-1-U	Moisture Content
SMM-3-1-L	Moisture Content
SMM-3L-2-U	Moisture Content
SMM-3L-3-U	Moisture Content
SMM-3-2-L	Moisture Content
SMM-3-3-L	Moisture Content
SMM-3L-4-U	Moisture Content
SMM-3-4-L	Moisture Content
SMM-3L-5-U	Moisture Content
SMM-3-5-L	Moisture Content
SMM-3L-6-U	Moisture Content
SMM-3-6-L	Moisture Content
SMM-3L-7-U	Moisture Content
SMM-3-7-L	Moisture Content
SMM-3L-8-U	Moisture Content
SMM-3-8-L	Moisture Content
SMM-3L-COMP-U	Moisture Content
SMM-3-COMP-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SMM-3L-1-U	Moisture Content
SMM-3-1-L	Moisture Content
SMM-3L-2-U	Moisture Content
SMM-3L-3-U	Moisture Content
SMM-3-2-L	Moisture Content
SMM-3-3-L	Moisture Content
SMM-3L-4-U	Moisture Content
SMM-3-4-L	Moisture Content
SMM-3L-5-U	Moisture Content
SMM-3-5-L	Moisture Content
SMM-3L-6-U	Moisture Content
SMM-3-6-L	Moisture Content
SMM-3L-7-U	Moisture Content
SMM-3-7-L	Moisture Content
SMM-3L-8-U	Moisture Content
SMM-3-8-L	Moisture Content
SMM-3L-COMP-U	Moisture Content

SMM-3-COMP-L Moisture Content	SMM-3-COMP-L	Moisture Content
-------------------------------	--------------	------------------

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-3L-1-U	16-10-0559-1	solid	8/03/16
SMM-3-1-L	16-10-0559-2	solid	8/03/16
SMM-3L-2-U	16-10-0559-3	solid	8/03/16
SMM-3L-3-U	16-10-0559-4	solid	8/03/16
SMM-3-2-L	16-10-0559-5	solid	8/03/16
SMM-3-3-L	16-10-0559-6	solid	8/03/16
SMM-3L-4-U	16-10-0559-7	solid	8/03/16
SMM-3-4-L	16-10-0559-8	solid	8/03/16
SMM-3L-5-U	16-10-0559-9	solid	8/03/16
SMM-3-5-L	16-10-0559-10	solid	8/03/16
SMM-3L-6-U	16-10-0559-11	solid	8/03/16
SMM-3-6-L	16-10-0559-12	solid	8/03/16
SMM-3L-7-U	16-10-0559-13	solid	8/03/16
SMM-3-7-L	16-10-0559-14	solid	8/03/16
SMM-3L-8-U	16-10-0559-15	solid	8/03/16
SMM-3-8-L	16-10-0559-16	solid	8/03/16
SMM-3L-COMP-U	16-10-0559-17	solid	8/03/16
SMM-3-COMP-L	16-10-0559-18	solid	8/03/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-10-0560
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 7/29/2016	Number of Samples: 18
Data Validation Report Date: 10/21/2016	Analytical Report Date: 10/21/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 27.6 and 27.4 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

For moisture, samples were received and analyzed after holding time expired. All other analyses were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161018S06, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory has BU flagged the following as analyzed after holding time expired.

Sample Name	Analyte(s)
SMM-2L-1-U	Moisture Content
SMM-2-1-L	Moisture Content
SMM-2L-2-U	Moisture Content
SMM-2-2-L	Moisture Content
SMM-2L-3-U	Moisture Content
SMM-2-3-L	Moisture Content
SMM-2L-4-U	Moisture Content
SMM-2-4-L	Moisture Content
SMM-2L-5-U	Moisture Content
SMM-2-5-L	Moisture Content
SMM-2L-6-U	Moisture Content
SMM-2-6-L	Moisture Content
SMM-2L-7-U	Moisture Content
SMM-2-7-L	Moisture Content
SMM-2L-8-U	Moisture Content
SMM-2-8-L	Moisture Content
SMM-2L-Comp-U	Moisture Content
SMM-2-Comp-L	Moisture Content

The laboratory has BV flagged the following as received after holding time expired.

Sample Name	Analyte(s)
SMM-2L-1-U	Moisture Content
SMM-2-1-L	Moisture Content
SMM-2L-2-U	Moisture Content
SMM-2-2-L	Moisture Content
SMM-2L-3-U	Moisture Content
SMM-2-3-L	Moisture Content
SMM-2L-4-U	Moisture Content
SMM-2-4-L	Moisture Content
SMM-2L-5-U	Moisture Content
SMM-2-5-L	Moisture Content
SMM-2L-6-U	Moisture Content
SMM-2-6-L	Moisture Content
SMM-2L-7-U	Moisture Content
SMM-2-7-L	Moisture Content
SMM-2L-8-U	Moisture Content
SMM-2-8-L	Moisture Content
SMM-2L-Comp-U	Moisture Content

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-2L-1-U	16-10-0560-1	solid	7/29/16
SMM-2-1-L	16-10-0560-2	solid	7/29/16
SMM-2L-2-U	16-10-0560-3	solid	7/29/16
SMM-2-2-L	16-10-0560-4	solid	7/29/16
SMM-2L-3-U	16-10-0560-5	solid	7/29/16
SMM-2-3-L	16-10-0560-6	solid	7/29/16
SMM-2L-4-U	16-10-0560-7	solid	7/29/16
SMM-2-4-L	16-10-0560-8	solid	7/29/16
SMM-2L-5-U	16-10-0560-9	solid	7/29/16
SMM-2-5-L	16-10-0560-10	solid	7/29/16
SMM-2L-6-U	16-10-0560-11	solid	7/29/16
SMM-2-6-L	16-10-0560-12	solid	7/29/16
SMM-2L-7-U	16-10-0560-13	solid	7/29/16
SMM-2-7-L	16-10-0560-14	solid	7/29/16
SMM-2L-8-U	16-10-0560-15	solid	7/29/16
SMM-2-8-L	16-10-0560-16	solid	7/29/16
SMM-2L-Comp-U	16-10-0560-17	solid	7/29/16
SMM-2-Comp-L	16-10-0560-18	solid	7/29/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-10-0561
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: Soil
Sampling Date: 8/4/2016	Number of Samples: 18
Data Validation Report Date: 11/2/2016	Analytical Report Date: 10/24/2016

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	V	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	1	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	2	Compound Quantitation	2
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P – Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, case narrative, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the EDD and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.8 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Moisture content was analyzed outside of proper hold times. All other samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

In batch 161014LA3, Zinc was detected in the method blank sample. Associated sample results were qualified with a B-flag by the laboratory. Detected concentrations of zinc were five times the respective method blank result and were thus considered positive results. No other target compounds were detected in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Terraphase Engineering Inc.

Surrogate compound recovery was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 161018S05 and 161014SA3, spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 161018S05 recovery of the Matrix Spike and Matrix Spike Duplicate was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory applied the following flag:

B Analyte was present in the associated method blank.

Results for the following samples/analytes were B-flagged:

Sample	J-Flagged Analytes
SARB-3H-1-U	zinc
SARB-3-1-H	zinc

SARB-3H-2-U	zinc
SARB-3-2-H	zinc
SARB-3H-3-U	zinc
SARB-3-3-H	zinc
SARB-3H-4-U	zinc
SARB-3-4-H	zinc
SARB-3H-5-U	zinc
SARB-3-5-H	zinc
SARB-3H-6-U	zinc
SARB-3-6-H	zinc
SARB-3H-7-U	zinc
SARB-3-7-H	zinc
SARB-3H-8-U	zinc
SARB-3-8-H	zinc
SARB-3H-Comp-U	zinc
SARB-3-Comp-H	zinc

The laboratory applied the following flag:

BV Sample received after holding time expired.

Results for the following samples/analytes were B-flagged:

Sample	B-Flagged Analytes
SARB-3H-1-U	moisture
SARB-3-1-H	moisture
SARB-3H-2-U	moisture
SARB-3-2-H	moisture
SARB-3H-3-U	moisture
SARB-3-3-H	moisture
SARB-3H-4-U	moisture
SARB-3-4-H	moisture
SARB-3H-5-U	moisture
SARB-3-5-H	moisture
SARB-3H-6-U	moisture
SARB-3-6-H	moisture
SARB-3H-7-U	moisture
SARB-3-7-H	moisture
SARB-3H-8-U	moisture

SARB-3-8-H	moisture
SARB-3H-Comp-U	moisture
SARB-3-Comp-H	moisture

The laboratory applied the following flag:

BU Sample analyzed after holding time expired.

Results for the following samples/analytes were B-flagged:

Sample	B-Flagged Analytes
SARB-3H-1-U	moisture
SARB-3-1-H	moisture
SARB-3H-2-U	moisture
SARB-3-2-H	moisture
SARB-3H-3-U	moisture
SARB-3-3-H	moisture
SARB-3H-4-U	moisture
SARB-3-4-H	moisture
SARB-3H-5-U	moisture
SARB-3-5-H	moisture
SARB-3H-6-U	moisture
SARB-3-6-H	moisture
SARB-3H-7-U	moisture
SARB-3-7-H	moisture
SARB-3H-8-U	moisture
SARB-3-8-H	moisture
SARB-3H-Comp-U	moisture
SARB-3-Comp-H	moisture

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARB-3H-1-U	16-10-0561-1	soil	8/4/16
SARB-3-1-H	16-10-0561-2	soil	8/4/16
SARB-3H-2-U	16-10-0561-3	soil	8/4/16
SARB-3-2-H	16-10-0561-4	soil	8/4/16
SARB-3H-3-U	16-10-0561-5	soil	8/4/16
SARB-3-3-H	16-10-0561-6	soil	8/4/16

SARB-3H-4-U	16-10-0561-7	soil	8/4/16
SARB-3-4-H	16-10-0561-8	soil	8/4/16
SARB-3H-5-U	16-10-0561-9	soil	8/4/16
SARB-3-5-H	16-10-0561-10	soil	8/4/16
SARB-3H-6-U	16-10-0561-11	soil	8/4/16
SARB-3-6-H	16-10-0561-12	soil	8/4/16
SARB-3H-7-U	16-10-0561-13	soil	8/4/16
SARB-3-7-H	16-10-0561-14	soil	8/4/16
SARB-3H-8-U	16-10-0561-15	soil	8/4/16
SARB-3-8-H	16-10-0561-16	soil	8/4/16
SARB-3H-Comp-U	16-10-0561-17	soil	8/4/16
SARB-3-Comp-H	16-10-0561-18	soil	8/4/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 16-10-0562
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Kristen Stroud	Matrix: soil
Sampling Date: 8/3/16	Number of Samples: 18
Data Validation Report Date: 11/3/16	Analytical Report Date: 10/24/16

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	V	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	2	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	2
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P – Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, case narrative, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the EDD and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 26.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Moisture content was analyzed outside of proper hold times. All other samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batcg 161018S07 spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

The laboratory applied the following flag:

BV Sample received after holding time expired.

Results for the following samples/analytes were B-flagged:

Sample	B-Flagged Analytes
SARA-3L-1-U	moisture
SARA-3-1-L	moisture
SARA-3L-2-U	moisture
SARA-3-2-L	moisture
SARA-3L-3-U	moisture

moisture
moisture

The laboratory applied the following flag:

BU Sample analyzed after holding time expired.

Results for the following samples/analytes were B-flagged:

Sample	B-Flagged Analytes
SARA-3L-1-U	moisture
SARA-3-1-L	moisture
SARA-3L-2-U	moisture
SARA-3-2-L	moisture
SARA-3L-3-U	moisture
SARA-3-3-L	moisture
SARA-3L-4-U	moisture
SARA-3-4-L	moisture
SARA-3L-5-U	moisture
SARA-3-5-L	moisture
SARA-3L-6-U	moisture
SARA-3-6-L	moisture
SARA-3L-7-U	moisture
SARA-3-7-L	moisture
SARA-3L-8-U	moisture
SARA-3-8-L	moisture
SARA-3L-COMP-U	moisture
SARA-3-COMP-L	moisture

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-3L-1-U	16-10-0562-1	soil	8/3/16
SARA-3-1-L	16-10-0562-2	soil	8/3/16
SARA-3L-2-U	16-10-0562-3	soil	8/3/16
SARA-3-2-L	16-10-0562-4	soil	8/3/16
SARA-3L-3-U	16-10-0562-5	soil	8/3/16
SARA-3-3-L	16-10-0562-6	soil	8/3/16
SARA-3L-4-U	16-10-0562-7	soil	8/3/16
SARA-3-4-L	16-10-0562-8	soil	8/3/16
SARA-3L-5-U	16-10-0562-9	soil	8/3/16
SARA-3-5-L	16-10-0562-10	soil	8/3/16
SARA-3L-6-U	16-10-0562-11	soil	8/3/16
SARA-3-6-L	16-10-0562-12	soil	8/3/16
SARA-3L-7-U	16-10-0562-13	soil	8/3/16
SARA-3-7-L	16-10-0562-14	soil	8/3/16
SARA-3L-8-U	16-10-0562-15	soil	8/3/16
SARA-3-8-L	16-10-0562-16	soil	8/3/16
SARA-3L-COMP-U	16-10-0562-17	soil	8/3/16
SARA-3-COMP-L	16-10-0562-18	soil	8/3/16

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-01-1450
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 1/17/2017	Number of Samples: 16
Data Validation Report Date: 2/15/2017	Analytical Report Date: 1/31/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 21.2 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 170124S03 of the post digestive spikes and zinc in batch 170124S03 of the matrix spikes, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-4H-1-U	17-01-1450-1	solid	1/17/17

SARA-4-1-H	17-01-1450-2	solid	1/17/17
SARA-4H-2-U	17-01-1450-3	solid	1/17/17
SARA-4-2-H	17-01-1450-4	solid	1/17/17
SARA-4H-3-U	17-01-1450-5	solid	1/17/17
SARA-4-3-H	17-01-1450-6	solid	1/17/17
SARA-4H-4-U	17-01-1450-7	solid	1/17/17
SARA-4-4-H	17-01-1450-8	solid	1/17/17
SARA-4H-5-U	17-01-1450-9	solid	1/17/17
SARA-4-5-H	17-01-1450-10	solid	1/17/17
SARA-4H-6-U	17-01-1450-11	solid	1/17/17
SARA-4-6-H	17-01-1450-12	solid	1/17/17
SARA-4H-7-U	17-01-1450-13	solid	1/17/17
SARA-4-7-H	17-01-1450-14	solid	1/17/17
SARA-4H-8-U	17-01-1450-15	solid	1/17/17
SARA-4-8-H	17-01-1450-16	solid	1/17/17

END OF REPORT

DATA VALIDATION REPORT

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-01-1554
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 1/18/2017	Number of Samples: 16
Data Validation Report Date: 2/15/2017	Analytical Report Date: 1/31/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

All data, as qualified, are acceptable for use.

DATA PACKAGE COMPLETENESS

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at a temperature of 21.2 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 170124S04 of the matrix spikes, the spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-4M-1-U	17-01-1554-1	solid	1/18/17
SARA-4-1-M	17-01-1554-2	solid	1/18/17

SARA-4M-2-U	17-01-1554-3	solid	1/18/17
SARA-4-2-M	17-01-1554-4	solid	1/18/17
SARA-4M-3-U	17-01-1554-5	solid	1/18/17
SARA-4-3-M	17-01-1554-6	solid	1/18/17
SARA-4M-4-U	17-01-1554-7	solid	1/18/17
SARA-4-4-M	17-01-1554-8	solid	1/18/17
SARA-4M-5-U	17-01-1554-9	solid	1/18/17
SARA-4-5-M	17-01-1554-10	solid	1/18/17
SARA-4M-6-U	17-01-1554-11	solid	1/18/17
SARA-4-6-M	17-01-1554-12	solid	1/18/17
SARA-4M-7-U	17-01-1554-13	solid	1/18/17
SARA-4-7-M	17-01-1554-14	solid	1/18/17
SARA-4M-8-U	17-01-1554-15	solid	1/18/17
SARA-4-8-M	17-01-1554-16	solid	1/18/17

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-01-1737
Project Number: 0102.001.002	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 1/19/2017	Number of Samples: 16
Data Validation Report Date: 2/15/2017	Analytical Report Date: 2/02/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	1
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	٧	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

Sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 3.8 and 3.2 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

For many samples, surrogate compound recovery was out of control limits for decachlorobiphenyl due to a required sample dilution and/or matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. All other surrogate compound recoveries were within acceptable criteria established by the laboratory for the respective testing methods.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For antimony, barium, thallium, and zinc in batch 170126S01, recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control limits due to suspected matrix interference. The associated LCS recovery was in control limits. For thallium in batch 170126S01 and mercury in batch 170130SA2, the MS/MSD RPD was out of control due to suspected matrix interference. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SARA-4-1-L	17-01-1737-1	solid	1/19/17
SARA-4-2-L	17-01-1737-2	solid	1/19/17
SARA-4-3-L	17-01-1737-3	solid	1/19/17
SARA-4-4-L	17-01-1737-4	solid	1/19/17
SARA-4-5-L	17-01-1737-5	solid	1/19/17
SARA-4-6-L	17-01-1737-6	solid	1/19/17
SARA-4-7-L	17-01-1737-7	solid	1/19/17
SARA-4-8-L	17-01-1737-8	solid	1/19/17
SARA-4L-1-U	17-01-1737-9	solid	1/19/17
SARA-4L-2-U	17-01-1737-10	solid	1/19/17
SARA-4L-3-U	17-01-1737-11	solid	1/19/17
SARA-4L-4-U	17-01-1737-12	solid	1/19/17
SARA-4L-5-U	17-01-1737-13	solid	1/19/17
SARA-4L-6-U	17-01-1737-14	solid	1/19/17
SARA-4L-7-U	17-01-1737-15	solid	1/19/17
SARA-4L-8-U	17-01-1737-16	solid	1/19/17

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-01-2301
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 1/24/2017	Number of Samples: 16
Data Validation Report Date: 2/16/2017	Analytical Report Date: 2/13/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	٧
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	1		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

The laboratory was instructed to change sample name prefix from "SMM-5" to "SMM-4". All other sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 4.7 and 5.1 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

For zinc in batch 170201LA6, the LCS Recovery Percentage is above control limits, but within the Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean). All other percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

All surrogate compound recoveries were within acceptable criteria established by the laboratory for the respective testing methods.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For Aroclor-1016 and Aroclor-1260 in batch 170202S03 and antimony, selenium, and vanadium in batch 170130S08, the matrix spike/matrix spike duplicate RPD was out of control limits due to suspected matrix interference. The associated LCS recovery was in control limits. For antimony and selenium in batch 170130S08 and mercury in batch 170206S02, the matrix spike/matrix spike duplicate RPD was out of control due to suspected matrix interference. For many analytes in batch 170130S08, spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

Terraphase Engineering Inc.

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-4-1-H	17-01-2301-1	solid	1/24/17
SMM-4H-1-U	17-01-2301-2	solid	1/24/17
SMM-4-2-H	17-01-2301-3	solid	1/24/17
SMM-4H-2-U	17-01-2301-4	solid	1/24/17
SMM-4-3-H	17-01-2301-5	solid	1/24/17
SMM-4H-3-U	17-01-2301-6	solid	1/24/17
SMM-4-4-H	17-01-2301-7	solid	1/24/17
SMM-4H-4-U	17-01-2301-8	solid	1/24/17
SMM-4-5-H	17-01-2301-9	solid	1/24/17
SMM-4H-5-U	17-01-2301-10	solid	1/24/17
SMM-4-6-H	17-01-2301-11	solid	1/24/17
SMM-4H-6-U	17-01-2301-12	solid	1/24/17
SMM-4-7-H	17-01-2301-13	solid	1/24/17
SMM-4H-7-U	17-01-2301-14	solid	1/24/17
SMM-4-8-H	17-01-2301-15	solid	1/24/17
SMM-4H-8-U	17-01-2301-16	solid	1/24/17

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-01-2401
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 1/25/2017	Number of Samples: 16
Data Validation Report Date: 2/17/2017	Analytical Report Date: 2/13/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	۷		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

The laboratory was instructed to change sample name prefix from "SMM-2" to "SMM-1". All other sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 19.9 and 19.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 170131S04 of the matrix spikes and zinc in batch 170131S04 of the post digestive spikes, spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Terraphase Engineering Inc.

Sample Name	Lab ID	Matrix	Date Collected
SMM-1-1-M	17-01-2401-1	solid	1/25/17
SMM-1M-1-U	17-01-2401-2	solid	1/25/17
SMM-1-2-M	17-01-2401-3	solid	1/25/17
SMM-1M-2-U	17-01-2401-4	solid	1/25/17
SMM-1-3-M	17-01-2401-5	solid	1/25/17
SMM-1M-3-U	17-01-2401-6	solid	1/25/17
SMM-1-4-M	17-01-2401-7	solid	1/25/17
SMM-1M-4-U	17-01-2401-8	solid	1/25/17
SMM-1-5-M	17-01-2401-9	solid	1/25/17
SMM-1M-5-U	17-01-2401-10	solid	1/25/17
SMM-1-6-M	17-01-2401-11	solid	1/25/17
SMM-1M-6-U	17-01-2401-12	solid	1/25/17
SMM-1-7-M	17-01-2401-13	solid	1/25/17
SMM-1M-7-U	17-01-2401-14	solid	1/25/17
SMM-1-8-M	17-01-2401-15	solid	1/25/17
SMM-1M-8-U	17-01-2401-16	solid	1/25/17

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-01-2544
Project Number: 0102.001.003	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 1/26/2017	Number of Samples: 16
Data Validation Report Date: 2/17/2017	Analytical Report Date: 2/13/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	۷	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	۷	Compound Quantitation	٧
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

The laboratory was instructed to change sample name prefix from "SMM-5" to "SMM-4". All other sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 24.5 and 24.7 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 170203S03, spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 170203S03, recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SMM-4-1-L	17-01-2544-1	solid	1/26/17
SMM-4-2-L	17-01-2544-2	solid	1/26/17
SMM-4-3-L	17-01-2544-3	solid	1/26/17
SMM-4-4-L	17-01-2544-4	solid	1/26/17
SMM-4L-1-U	17-01-2544-5	solid	1/26/17
SMM-4L-2-U	17-01-2544-6	solid	1/26/17
SMM-4L-3-U	17-01-2544-7	solid	1/26/17
SMM-4L-4-U	17-01-2544-8	solid	1/26/17
SMM-4-5-L	17-01-2544-9	solid	1/26/17
SMM-4-6-L	17-01-2544-10	solid	1/26/17
SMM-4-7-L	17-01-2544-11	solid	1/26/17
SMM-4-8-L	17-01-2544-12	solid	1/26/17
SMM-4L-5-U	17-01-2544-13	solid	1/26/17
SMM-4L-6-U	17-01-2544-14	solid	1/26/17
SMM-4L-7-U	17-01-2544-15	solid	1/26/17
SMM-4L-8-U	17-01-2544-16	solid	1/26/17

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-02-0637
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 2/6/2017	Number of Samples: 16
Data Validation Report Date: 2/22/2017	Analytical Report Date: 2/21/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	٧	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 20.4 and 20.6 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For zinc in batch 170210S02 of the matrix spikes and post digestive spikes, spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	nple Name Lab ID		Date Collected
SSP-4L-1-U	17-02-0637-1	solid	2/06/17
SSP-4L-2-U	17-02-0637-2	solid	2/06/17

SSP-4L-3-U	17-02-0637-3	solid	2/06/17
SSP-4L-4-U	17-02-0637-4	solid	2/06/17
SSP-4-1-L	17-02-0637-5	solid	2/06/17
SSP-4-2-L	17-02-0637-6	solid	2/06/17
SSP-4-3-L	17-02-0637-7	solid	2/06/17
SSP-4-4-L	17-02-0637-8	solid	2/06/17
SSP-4L-5-U	17-02-0637-9	solid	2/06/17
SSP-4L-6-U	17-02-0637-10	solid	2/06/17
SSP-4L-7-U	17-02-0637-11	solid	2/06/17
SSP-4L-8-U	17-02-0637-12	solid	2/06/17
SSP-4-5-L	17-02-0637-13	solid	2/06/17
SSP-4-6-L	17-02-0637-14	solid	2/06/17
SSP-4-7-L	17-02-0637-15	solid	2/06/17
SSP-4-8-L	17-02-0637-16	solid	2/06/17

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-02-0769
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 2/7/2017	Number of Samples: 16
Data Validation Report Date: 3/9/2017	Analytical Report Date: 2/22/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	1
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	٧	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	۷
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 4.1, 4.9, and 5.0 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

For samples SSP-4-6-M and SSP-4-7-M, surrogate Decachlorobiphenyl compound recovery was above the control limits due to a required sample dilution and matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 170213SA11 and many analytes in batch 170213S02, spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For mercury in batch 170215S01, aroclor-1016 and aroclor-1260 in batch 170220S05, and many analytes in batch 170213S02, the recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. For antimony, chromium, and silver in batch 170213S02 and silver in batch 170213SA11, the MS/MSD RPD was out of control due to suspected matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-4M-1-U	17-02-0769-1	solid	2/07/17
SSP-4M-2-U	17-02-0769-2	solid	2/07/17
SSP-4M-3-U	17-02-0769-3	solid	2/07/17
SSP-4-1-M	17-02-0769-4	solid	2/07/17
SSP-4-2-M	17-02-0769-5	solid	2/07/17
SSP-4-3-M	17-02-0769-6	solid	2/07/17
SSP-4M-4-U	17-02-0769-7	solid	2/07/17
SSP-4M-5-U	17-02-0769-8	solid	2/07/17
SSP-4M-6-U	17-02-0769-9	solid	2/07/17
SSP-4-4-M	17-02-0769-10	solid	2/07/17
SSP-4-5-M	17-02-0769-11	solid	2/07/17
SSP-4-6-M	17-02-0769-12	solid	2/07/17
SSP-4M-7-U	17-02-0769-13	solid	2/07/17
SSP-4M-8-U	17-02-0769-14	solid	2/07/17
SSP-4-7-M	17-02-0769-15	solid	2/07/17
SSP-4-8-M	17-02-0769-16	solid	2/07/17

Project Name: ISRI MSR Treatability Study	Lab Reference Number: 17-02-0911
Project Number: 0102.001.004	Laboratory: Eurofins Calscience
Validated by: Julia Kho	Matrix: solid
Sampling Date: 2/8/2017	Number of Samples: 16
Data Validation Report Date: 3/9/2017	Analytical Report Date: 2/22/2017

The quality control (QC) elements that were reviewed are listed below.

Data Package Completeness	٧	Surrogate Compound Recovery	NA
Verification of EDD to Hardcopy Data Package	V	Sample Duplicate Analysis	V
Chain-of-Custody and Sample Preservation	1	Blank Spike/Blank Spike Duplicate Sample Analyses	NA
Holding Times	V	Matrix Spike/Matrix Spike Duplicate Sample Analyses	1
Retention Time Windows	NE	Trip Blank Sample Analysis	NA
Initial Calibration	NE	Equipment Blank Sample Analysis	NA
Initial Calibration Verification	NE	Field Duplicate Sample Analysis	NA
Continuing Calibration	NE	Reference Material Analysis	NA
Method Blank Analysis	٧	Compound Quantitation	٧
Laboratory Control Samples	٧		

v - Method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed in this Data Validation Report.

NA – Not applicable

NE – Not evaluated

P - Pending

OVERALL ASSESSMENT

The data package included the required elements: chain-of-custody, sample receipt checklist, results and QC results.

VERIFICATION OF EDD TO HARDCOPY DATA PACKAGE

Sample results and related quality control data were received in both an electronic and hardcopy format. Electronic data were verified against the laboratory report; no errors were found.

CHAIN-OF-CUSTODY

All sample identification (ID) numbers listed on the chain-of-custody record are consistent with the sample ID reported in the laboratory electronic data deliverable (EDD) and hardcopy data package.

SAMPLE PRESERVATION

Samples were received at temperatures of 21.1 and 21.0 degrees Centigrade. Proper preservation includes samples chilled to 4 ± 2 degrees Celsius.

HOLDING TIMES

Samples were analyzed within the holding time.

RETENTION TIME WINDOWS

Not evaluated.

INITIAL CALIBRATION

Not evaluated.

INITIAL CALIBRATION VERIFICATION

Not evaluated.

CONTINUING CALIBRATION

Not evaluated.

METHOD BLANK ANALYSIS

No target compounds were detected above the reporting limit in the method blank samples.

LABORATORY CONTROL SAMPLES

All percent recovery values for laboratory control samples (LCS) were within acceptable criteria established by the laboratory for the respective testing methods.

SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was not performed for this sample batch.

SAMPLE DUPLICATE ANALYSIS

All percent recoveries and RPDs for sample duplicates were within acceptable criteria established by the laboratory for the respective testing methods and were below the project precision RPD goal of 50.

BLANK SPIKE/BLANK SPIKE DUPLICATE SAMPLE ANALYSES

Blank spike and blank spike duplicate analyses were not performed for this sample batch. Precision was evaluated using the matrix spike and matrix spike duplicate analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE ANALYSES

For lead and zinc in batch 170213S03 spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater. For cadmium in batch 170213S03, the recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. In addition, the MS/MSD RPD was out of control due to suspected matrix interference. All other percent recoveries and relative percent differences (RPDs) for matrix spikes and matrix spike duplicates were within acceptable criteria established by the laboratory for the respective testing methods.

TRIP BLANK SAMPLE ANALYSIS

A trip blank sample was not submitted for this sample batch.

EQUIPMENT BLANK SAMPLE ANALYSIS

An equipment blank sample was not submitted for this sample batch.

FIELD DUPLICATE ANALYSES

A field duplicate sample was not collected for this sample batch.

REFERENCE MATERIAL ANALYSIS

No reference material analysis was performed.

COMPOUND QUANTITATION

No flags were assigned to the analytical results.

SAMPLE INDEX

Sample Name	Lab ID	Matrix	Date Collected
SSP-4H-1-U	17-02-0911-1	solid	2/08/17
SSP-4H-2-U	17-02-0911-2	solid	2/08/17
SSP-4H-3-U	17-02-0911-3	solid	2/08/17
SSP-4H-4-U	17-02-0911-4	solid	2/08/17
SSP-4-1-H	17-02-0911-5	solid	2/08/17
SSP-4-2-H	17-02-0911-6	solid	2/08/17
SSP-4-3-H	17-02-0911-7	solid	2/08/17
SSP-4-4-H	17-02-0911-8	solid	2/08/17
SSP-4H-5-U	17-02-0911-9	solid	2/08/17
SSP-4H-6-U	17-02-0911-10	solid	2/08/17
SSP-4H-7-U	17-02-0911-11	solid	2/08/17
SSP-4H-8-U	17-02-0911-12	solid	2/08/17
SSP-4-5-H	17-02-0911-13	solid	2/08/17
SSP-4-6-H	17-02-0911-14	solid	2/08/17
SSP-4-7-H	17-02-0911-15	solid	2/08/17
SSP-4-8-H	17-02-0911-16	solid	2/08/17

APPENDIX B-IV PILOT STUDY PHOTO LOG

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
terraphase	PROJECT: MSR Treatability Study	
e ngineering	PROJECT NUMBER: 0102.001.001	PAGE 1

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terraphase	PROJECT: MSR Treatability Study	
engineering	PROJECT NUMBER: 0102.001.001	PAGE 2

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terraphase	PROJECT: MSR Treatability Study	PHOTOLOG
engineering	PROJECT NUMBER: 0102.001.001	PAGE 3

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terraphase	PROJECT: MSR Treatability Study	PHOTOLOG
- engineering	PROJECT NUMBER: 0102.001.001	PAGE 4

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terraphase	PROJECT: MSR Treatability Study	
engineering	PROJECT NUMBER: 0102.001.001	PAGE 5

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terraphase	PROJECT: MSR Treatability Study	
engineering	PROJECT NUMBER: 0102.001.001	PAGE 6

SAFETY FIRS	Т	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terrap	nase	PROJECT: MSR Treatability Study	PHOTOLOG
engine	ering	PROJECT NUMBER: 0102.001.001	PAGE 7

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terraphase	PROJECT: MSR Treatability Study	
engineering	PROJECT NUMBER: 0102.001.001	PAGE 8

	SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
-	terraphase	PROJECT: MSR Treatability Study	PHOTOLOG
	engineering	PROJECT NUMBER: 0102.001.001	PAGE 9

SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(terraphase	PROJECT: MSR Treatability Study	PHOTOLOG
engineering	PROJECT NUMBER: 0102.001.001	PAGE 10

	SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	PHOTOLOG
÷.	terraphase	PROJECT: MSR Treatability Study	
	engineering	PROJECT NUMBER: 0102.001.001	PAGE 11

	SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
(3)	terraphase	PROJECT: MSR Treatability Study	
	engineering	PROJECT NUMBER: 0102.001.001	PAGE 12

	SAFETY FIRST	CLIENT: Institute of Scrap Recycling Industries – California Chapter	
1	terraphase	PROJECT: MSR Treatability Study	
	engineering	PROJECT NUMBER: 0102.001.001	PAGE 13

APPENDIX C PILOT STUDY DTSC RESULTS

Table C1Comparison of Three-Day ISRI and DTSC WET Metals ResultsPilot StudyMetal Shredder Residue Treatability Study

					Untreate	d Wet Lead					Treated	Wet Lead					Untreate	d Wet Zinc				Treated Wet Zinc				
Facility	Sample Dat	e Dosage	DISCAN		DTSC 90%	DTSC 95%	ISRI 90%	ISRI 95%	DTCC Ave		DTSC 90%	6 DTSC 95%	ISRI 90%	ISRI 95%	DTCC Ave		DTSC 90%	DTSC 95%	ISRI 90%	ISRI 95%	DISCAN		DTSC 90%	DTSC 95%	ISRI 90%	ISRI 95%
			DISC AVg	ISKI AVg	UCL	UCL	UCL	UCL	DISC AVg	ISKI AVg	UCL	UCL	UCL	UCL	DISCAVg	ISKI AVg	UCL	UCL	UCL	UCL	DISC AVg	ISKI AVg	UCL	UCL	UCL	UCL
SARA	07/07/201	5 H	69.0	35.3	76.7	79.0	40.0	41.4	2.73	11.5	3.87	4.32	17.5	20.2	658	403	699	712	433	441	170	144	208	219	219	252
SARA	07/06/201	5 M	62.3	44.8	67.8	69.4	49.2	50.5	4.54	15.2	5.42	5.72	21.2	23.5	629	421	662	672	459	471	373	245	409	420	281	291
SARA	07/22/201	5 L	59.1	42.7	64.3	65.8	48.4	50.0	11.2	30.4	19.9	23.8	36.1	38.1	694	308	744	759	333	340	489	251	528	540	271	277
SARB	07/20/201	5 H	31.8	54.9	37.9	39.7	68.4	73.1	1.87	5.50	2.00	2.12	7.52	8.27	848	713	940	968	1270	1522	241	216	284	296	256	268
SART	07/15/2010	5 H	40.7	29.9	44.3	45.4	32.3	33.1	2.93	4.76	3.74	3.97	6.51	7.16	518	365	558	570	384	390	177	126	216	228	186	214
SMM	07/21/201	5 H	62.6	62.2	73.8	77.1	72.2	75.2	8.57	29.5	12.3	14.1	37.3	40.1	1081	403	1193	1227	436	446	402	289	508	540	311	318
SMM	07/22/2010	5 L	51.8	45.3	60.0	62.5	52.2	54.5	10.1	34.3	13.6	14.9	37.9	39.0	1341	361	1439	1468	387	394	799	336	878	901	362	370
SSP	07/18/201	5 H	48.7	55.9	52.3	53.3	63.5	65.7	3.91	15.9	5.13	5.80	24.3	27.6	1140	738	1235	1262	851	882	192	265	311	365	383	437
SSP	07/19/201	5 M	28.1	38.3	34.5	36.4	40.4	41.1	2.79	21.3	3.60	3.85	25.1	26.3	1119	503	1207	1234	532	541	349	380	449	479	460	496
SSP	07/20/201	5 L	52.5	49.0	56.4	57.7	59.2	62.0	19.5	40.3	25.3	27.6	44.2	45.5	1453	489	1573	1609	523	533	1037	440	1087	1103	462	468

Notes:

UCL = Upper Confidence Limit

WET = Waste Extraction Test

Avg = Average

Concentrations are reported in milligrams per liter (mg/L)

If one or more results were not detected above the laboratory reporting limit (RL), half of the RL was used as a proxy

					TOTAL METALS (mg/kg)																						
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated
Facility	Sample Date	Day	Dosage	Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel
SARA	7/7/2016	1	Н	1	217	73.1	ND	ND	1810	483	ND	ND	14.6	ND	89.7	174	25.9	17.7	8430	14800	754	435	4.38	1.82	13.6	11.2	116
SARA	7/7/2016	1	Н	2	188	273	ND	ND	477	501	ND	ND	13.2	30.4	199	205	21.6	26.9	9490	17700	530	432	2.71	1.87	10.1	12.8	452
SARA	7/7/2016	1	Н	3	149	67.5	ND	ND	579	382	ND	ND	16.3	10.8	283	375	34.9	24.2	2970	6440	770	447	61.8	72.5	17	12.9	219
SARA	7/7/2016	1	Н	4	231	91.2	ND	ND	655	442	ND	ND	12	12	131	261	23.7	19.8	19100	17400	495	444	129	73	10.2	ND	103
SARA	7/7/2016	1	Н	5	85.9	106	ND	ND	718	420	ND	ND	21	10.2	120	700	45.5	20.4	6930	11700	774	620	7.86	69.2	16.1	13.8	774
SARA	7/7/2016	1	Н	6	271	160	ND	10.2	770	385	ND	ND	45	13.1	201	110	27.8	24.6	19400	10700	762	644	7.69	2.36	13.8	11.4	320
SARA	7/7/2016	1	Н	7	165	117	ND	ND	709	446	ND	ND	23.6	17.9	121	57	43.6	18.6	11300	5300	1370	381	5.78	1.46	19	ND	149
SARA	7/7/2016	1	Н	8	96.4	292	ND	ND	419	443	ND	ND	14	11	289	86	24.6	22.4	8500	10400	553	340	2.46	1.18	16.2	ND	200
SARA	7/7/2016	1	Н	COMP	116	82	ND	ND	435	397	ND	ND	13.4	14.4	133	1070	27.6	31.4	15200	3000	1740	477	2.75	2.29	13.3	17	187
SARA	7/18/2016	2	Н	1	60.9	93.8	ND	10.4	228	156	ND	ND	7.86	19.5	50.3	195	8.29	21.2	23000	9060	226	411	3.33	3.76	ND	9.01	64.6
SARA	7/18/2016	2	Н	2	75.8	100	ND	ND	220	142	ND	ND	12.2	11.2	75.3	1350	14.4	25.5	1680	6220	573	435	5.65	2.22	8.59	28	187
SARA	7/18/2016	2	н	3	54	854	ND	11.5	244	197	ND	ND	17.4	8.17	501	279	23.5	11.8	8840	16300	668	426	7.54	3.34	18.4	10.5	273
SARA	7/18/2016	2	н	4	87.2	64.6	8.89	10.3	295	214	ND	ND	17.8	18.7	67.8	75.1	19.2	10	12700	10100	752	389	5.12	1.64	8.13	ND	85.4
SARA	7/18/2016	2	н	5	98.6	36.1	ND	13.1	325	157	ND	ND	15.6	12.2	172	116	21	15.1	11200	3800	763	590	4.94	6.79	11.1	8.2	137
SARA	7/18/2016	2	н	6	73	72	ND	11.2	320	172	ND	ND	16.6	12.4	1290	803	21.8	22.7	5210	10000	736	484	12.8	2.46	9.79	12.9	659
SARA	7/18/2016	2	н	7	48.5	84.4	ND	7 72	250	180	ND	ND	13.8	9.01	119	891	19.3	19.1	3060	8940	713	455	4 35	2.04	9 53	19.5	95.2
SARA	7/18/2010	2	н	, 8	68	104	ND	8 13	250	167	ND	ND	11.8	7.83	610	721	39.9	13.1	4480	1310	601	389	7.13	1.81	13.5	16.1	309
SARA	7/18/2016	2	<u>н</u>	COMP	161	52.5	ND	10.9	205	19/	ND	ND	15.5	10.2	276	701	30	16.2	4400	7590	769	505	7.15	2 72	19.2	15	243
SARA	7/18/2010	2	н Н	1	52 7	74.1	7.04	10.0	273	262	ND	ND	13.5	7 90	1240	52.6	22 5	12.2	56800	6300	/08	/12	2.25	2.72	24.0	9.86	722
SARA	7/27/2010	2		2	120	74.1	7.04	11.9	2/3	216	ND	ND		7.85	106	28.0	7 96	10.0	11400	17200	478	202	2.25	2.00	9.46	7 72	732
SARA	7/27/2010	2		2	138	//.3	ND	0 10	343	202		ND	6.69	ND	771	56.5	11.6	10.5	4570	9570	274	203	6.55	2.33	9.40 12 E	10.1	74.4
SARA	7/27/2010	2		3	03.0	40.7	ND	3.10	420	203		ND	0.00	7.41	92.1	33.5	17.0	5.5	4370	18000	200	370	5.07	2.44	13.5	10.1	555
SARA	7/27/2016	2	<u> </u>	4	37.0	115	ND	7.95	429	291	ND	ND	8.27	7.41	05.1	104	17.4	11.4	50800	18000	338	458	3.03	2.97	11.7	10.4	150
SARA	7/27/2016	3	н	5	100	151	ND	ND	281	326	ND	ND	ND	ND	354	48.2	8.85	10.2	5430	33600	222	227	2.58	2.55	7.23	ND	158
SARA	7/27/2016	3	н	6	196	103	ND	ND	436	326	ND	ND	ND	ND	535	42	10.5	11.5	23000	4790	199	239	3.47	1.6	12.9	9.39	255
SARA	//2//2016	3	н	/	137	114	ND	8.48	387	235	ND	ND	ND	8.1	54.5	69.2	11.6	14.6	31500	2310	243	316	1.44	1.35	7.51	11.2	50.3
SARA	//2//2016	3	н	8	94.1	79.1	ND	7.07	534	313	ND	ND	11.2	9.12	97.3	68.6	11.8	13.2	25100	10900	228	249	2.28	1.29	9.11	8.37	66.7
SARA	7/27/2016	3	Н	COMP	135	133	ND	7.52	470	381	ND	ND	10	ND	197	131	17.9	9.28	7570	12800	564	267	5.28	1.24	18.2	20.2	147
SARA	7/6/2016	1	М	1	172	346	ND	ND	383	383	ND	ND	ND	ND	77.2	77.2	14.2	14.2	8920	8920	494	494	2.22	5.65	ND	ND	81.5
SARA	7/6/2016	1	М	2	76.3	286	ND	ND	423	247	ND	ND	13.4	ND	227	276	21.7	16.4	12400	32600	558	356	3.34	3.33	12.8	ND	163
SARA	7/6/2016	1	М	3	89	149	ND	ND	512	456	ND	ND	10.6	11.6	66.3	91.2	19.7	21.8	6590	5530	564	536	1.84	7.54	13.4	12.2	95.5
SARA	7/6/2016	1	М	4	177	45.6	ND	10.1	839	277	ND	ND	ND	10.1	183	104	15.4	16.6	10800	9400	358	374	1.81	4.35	11	13.1	137
SARA	7/6/2016	1	М	5	113	84.1	ND	ND	545	367	ND	ND	13.1	10.6	855	131	32.4	18.1	18000	3670	664	380	7.48	7.13	94	ND	897
SARA	7/6/2016	1	М	6	135	87.4	ND	ND	594	519	ND	ND	10.1	ND	243	73.9	19.2	ND	10300	12000	516	345	2.04	2.72	16.5	13.2	117
SARA	7/6/2016	1	М	7	215	101	ND	ND	656	308	ND	ND	16.8	11.2	87.9	176	25.6	19.5	8650	13800	996	660	12.8	2.46	20.1	21.3	148
SARA	7/6/2016	1	М	8	80.4	170	ND	ND	622	441	ND	ND	15.3	14.1	113	177	20.5	23.2	2890	7910	768	502	5.12	4.94	14.2	11.7	134
SARA	7/6/2016	1	М	COMP	118	134	ND	ND	537	370	ND	ND	11.6	9.86	160	188	23.5	14.3	13300	12200	602	422	3.75	6.79	15.2	11.2	140
SARA	7/19/2016	2	М	1	50.9	107	ND	ND	361	271	ND	ND	7.37	11	72.9	236	13.3	15.8	5980	38800	503	456	n/a	n/a	10.1	12.7	117
SARA	7/19/2016	2	М	2	114	88.6	ND	ND	497	349	ND	ND	9.59	8.93	72.7	154	23.6	39.6	7760	5470	733	638	n/a	n/a	13.5	12.6	88.7
SARA	7/19/2016	2	М	3	111	95.9	ND	ND	540	367	ND	ND	13.1	7.79	97.8	279	24.8	21.4	5950	5350	923	733	n/a	n/a	18.1	14.2	112
SARA	7/19/2016	2	М	4	81.8	42.6	ND	ND	353	272	ND	ND	ND	ND	165	1150	10	22.7	10800	6590	370	366	n/a	n/a	21.8	16.9	111
SARA	7/19/2016	2	М	5	178	103	ND	ND	276	319	ND	ND	ND	ND	63.7	90.1	11.5	14.2	19900	2090	435	433	n/a	n/a	8.97	11.4	61.3
SARA	7/19/2016	2	М	6	108	138	ND	ND	396	582	ND	ND	11.6	8.76	215	122	27	25.8	4430	19100	666	476	n/a	n/a	15.5	12.7	146
SARA	7/19/2016	2	М	7	91.1	112	ND	ND	637	268	ND	ND	8.82	ND	153	362	22.4	17.9	12400	5740	522	422	n/a	n/a	10.2	28.8	91.2
SARA	7/19/2016	2	М	8	121	47.9	ND	ND	383	322	ND	ND	ND	ND	110	265	12.5	17.7	10800	19000	1730	456	n/a	n/a	11.9	13.4	70
SARA	7/19/2016	2	М	COMP	41.4	64.4	ND	ND	256	254	ND	ND	14.8	7.52	42.1	157	11.7	21.1	14700	12300	446	353	n/a	n/a	8.78	14.3	55.2
SARA	7/26/2016	3	M	1	172	66.2	33.3	17.8	166	363	ND	ND	8.46	10.8	104	202	10.6	33.5	2220	5240	416	916	n/a	n/a	7,57	16.2	64.9
SARA	7/26/2016	3	M	2	57.9	233	25.1	12.9	290	353	ND	ND	11.7	13.2	334	843	71.1	21.4	3550	16400	500	640	n/a	n/a	11.2	36	189
SARA	7/26/2016	3	M	3	82.4	5905	16.9	15.9	258	278	ND	ND	14.8	13.7	188	125	27.2	32.1	1730	725	895	818	n/a	n/a	14.7	13.4	125
SARA	7/26/2016	3	M	4	98.6	95.7	18.6	8 74	379	138	ND	ND	18.9	6.76	168	278	34.5	15.8	1280	7580	1050	685	n/a	n/a	18.2	10.3	161
SARA	7/26/2010	3	M	- 	95.7	296	58.5	22.7	310	357	ND	ND	11.2	10.2	121	2/8	21 Q	17	2440	16400	619	610	n/a	n/a	10.2	19.8	64.7
SADA	7/26/2010	2	N/	6	78.9	101	16.2	40.7	402	267			15.9	7 77	299	240	26.5	22 /	2140	6250	800	456	n/a	n/a	27.5	11 5	220
SADA	7/26/2010	2	N/	7	0.0	1/12	25.4	10.7	432	207			1/ 2	9 OE	122	177	20.5	14.9	10100	10200	809	594	n/a	n/a	12.3	10.2	110
SARA	7/26/2010	2		0	00.0	142	23.4	70 C	422	272			14.5	0.00	220	120	20.2	24.0	7520	20200	030 5/0	710	n/a	n/a	13.2	15.5	112
SARA	7/20/2010	2			90.9	114	22.2	30.0	357	3/3			9.09	14.5	220	110	20.5	12 5	1360	3360	545	/19	11/d	11/d	13.1	15.2	220
SAKA	//20/2016	3	IVI	COMP	110	120	21.5	19.3	357	285	ND	ND	14	ð.2b	395	110	3/./	13.5	1360	10/00	835	o24	n/a	n/a	23.8	10.3	296

					TOTAL METALS (mg/kg)											TOTAL PC	Bs (mg/kg)
					Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Nickel	Selenium	Selenium	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Total PCBs	Total PCBs
SARA	7/7/2016	1	H	1	117	ND	ND	ND	ND	ND	ND	ND	45.4	8080	4430	ND	ND
SARA	7/7/2016	1	Н	2	435	ND	ND	11.2	ND	ND	ND	ND	28.8	4300	4040	ND	ND
SARA	7/7/2016	1	Н	3	423	ND	ND	ND	ND	ND	ND	ND	44	6260	4160	ND	ND
SARA	7/7/2016	1	н	4	173	ND	ND	ND	ND	ND	ND	ND	30	4090	3620	ND	ND
SARA	7/7/2016	1	Н	5	182	ND	ND	12.6	ND	ND	ND	ND	28.4	7320	3830	ND	ND
SARA	7/7/2016	1	н	6	172	ND	ND	ND	ND	ND	ND	ND	36.4	6460	5460	ND	ND
SARA	7/7/2016	1	н	7	71	ND	ND	ND	ND	ND	ND	ND	35	10500	3880	ND	ND
SARA	7/7/2016	1	н	, 8	87.5	ND	ND	ND	10.2	ND	ND	ND	33.1	5740	3840	ND	ND
SARA	7/7/2010	1	н	COMP	468	ND	ND	ND	ND	ND	ND	ND	27.0	5040	4400	ND	ND
SARA	7/19/2010	2		1	162	0.00	10	ND	ND	ND	ND	ND	37.5	1040	2790	ND	ND
SARA	7/18/2010	2	н	2	656	3.03	7.9/	10.4	ND	ND	ND	ND	21.3	4050	2/10	ND	ND
SARA	7/18/2010	2	п u	2	241	7.51	7.94	10.4	9.22	ND	ND		27.2	4030	3410	ND	
SARA	7/18/2010	2		3	341	7.51	ND	ND	9.23	ND	ND	ND	31.7	4870	2230	ND	ND
SARA	7/18/2016	2		4	4/	11.8	ND	ND	ND	ND	ND	ND	19.5	4420	1900	ND	ND
SARA	7/18/2016	2	н	5	95.6	ND	ND	ND	ND	ND	ND	ND	32.8	4110	3640	ND	ND
SARA	7/18/2016	2	н	6	532	6.72	12.3	ND	ND	ND	ND	ND	39.7	4490	2810	ND	ND
SARA	//18/2016	2	н	/	777	ND	8.1	14.3	10.3	ND	ND	ND	29.4	3880	3130	ND	ND
SARA	//18/2016	2	н	8	277	6.9	ND	7.85	9.13	ND	ND	ND	25.7	3500	1850	ND	ND
SARA	//18/2016	2	н	СОМР	445	6.17	8.55	38.9	ND	ND	ND	ND	32.3	4730	2670	ND	ND
SARA	//2//2016	3	Н	1	62.8	ND	ND	7.11	ND	ND	ND	7.22	18.8	5440	3270	ND	ND
SARA	7/27/2016	3	Н	2	230	ND	ND	19.5	ND	ND	ND	ND	17.2	2370	2480	ND	ND
SARA	7/27/2016	3	Н	3	53.3	ND	ND	ND	ND	ND	ND	8.28	21.3	2490	3380	ND	ND
SARA	7/27/2016	3	Н	4	79.5	ND	ND	ND	ND	ND	ND	6.71	23.5	4130	3640	ND	ND
SARA	7/27/2016	3	Н	5	305	ND	ND	ND	ND	ND	ND	ND	13.9	1830	1860	ND	ND
SARA	7/27/2016	3	Н	6	53.2	ND	ND	ND	ND	ND	ND	ND	22	1810	2760	ND	ND
SARA	7/27/2016	3	Н	7	71.4	ND	ND	ND	ND	ND	ND	ND	24.8	2880	3610	ND	ND
SARA	7/27/2016	3	Н	8	264	ND	ND	ND	9.19	ND	ND	ND	20.7	2720	2520	ND	ND
SARA	7/27/2016	3	Н	COMP	75.1	ND	ND	ND	ND	ND	ND	ND	18.6	5740	2490	ND	ND
SARA	7/6/2016	1	М	1	81.5	ND	ND	ND	ND	ND	ND	ND	27.6	4800	5530	ND	ND
SARA	7/6/2016	1	М	2	161	ND	ND	16.7	ND	ND	ND	ND	26	7120	3990	ND	ND
SARA	7/6/2016	1	М	3	123	ND	ND	11.7	ND	ND	ND	ND	40.9	5570	7990	ND	ND
SARA	7/6/2016	1	М	4	99.3	ND	ND	ND	ND	ND	ND	ND	34.9	5100	5410	ND	ND
SARA	7/6/2016	1	М	5	108	ND	ND	ND	ND	ND	ND	ND	28.7	7660	5330	ND	ND
SARA	7/6/2016	1	М	6	280	ND	ND	34.5	ND	ND	ND	ND	23.8	6490	2790	ND	ND
SARA	7/6/2016	1	М	7	236	ND	ND	ND	ND	ND	ND	ND	33	8430	5560	ND	ND
SARA	7/6/2016	1	М	8	148	ND	ND	ND	ND	ND	ND	ND	35.9	5670	4860	ND	ND
SARA	7/6/2016	1	М	COMP	108	ND	ND	ND	ND	ND	ND	ND	30.4	6280	4180	ND	ND
SARA	7/19/2016	2	М	1	119	ND	ND	ND	ND	ND	ND	ND	26.5	2950	2790	n/a	n/a
SARA	7/19/2016	2	М	2	463	ND	ND	ND	ND	ND	ND	11.7	19.2	4780	4120	n/a	n/a
SARA	7/19/2016	2	М	3	135	ND	ND	ND	7.66	ND	ND	8.32	31.1	12200	4250	n/a	n/a
SARA	7/19/2016	2	М	4	554	ND	ND	ND	7.29	ND	ND	ND	22.4	2660	2760	n/a	n/a
SARA	7/19/2016	2	М	5	106	ND	ND	ND	8.87	ND	ND	ND	29.6	2950	2800	n/a	n/a
SARA	7/19/2016	2	М	6	207	ND	ND	15.9	12.1	ND	ND	ND	20.8	5540	5970	n/a	n/a
SARA	7/19/2016	2	М	7	184	ND	ND	ND	ND	ND	ND	ND	38.4	5660	3360	n/a	n/a
SARA	7/19/2016	2	М	8	152	ND	ND	ND	ND	ND	ND	ND	18.6	3240	11900	n/a	n/a
SARA	7/19/2016	2	М	COMP	126	ND	ND	ND	ND	ND	ND	ND	54.9	3390	3260	n/a	n/a
SARA	7/26/2016	3	M	1	209	ND	ND	ND	10.3	ND	ND	ND	42.2	2070	3040	n/a	n/a
SARA	7/26/2016	3	M	2	679	ND	ND	ND	23.6	ND	ND	6.5	33.8	2450	3130	n/a	n/a
SARA	7/26/2016	3	M	3	122	ND	ND	ND	ND	ND	ND	9,21	29.6	5200	4930	n/a	n/a
SARA	7/26/2016	3	M	4	152	ND	ND	ND	ND	ND	ND	12.4	16.9	6480	2830	n/a	n/a
SARA	7/26/2016	3	M	5	187	ND	ND	ND	9,29	ND	ND	ND	21.9	3590	3130	n/a	n/a
SARA	7/26/2016	3	M	6	125	ND	ND	ND	ND	ND	ND	8.54	27.4	6450	3400	n/a	n/a
SARA	7/26/2016	3	M	7	213	ND	ND	31.1	ND	ND	ND	9.59	25.2	5370	3240	n/a	n/a
SADA	7/26/2010	2	N/	2 2	1/2			ND		ND		5.00	21.2	4320	5240	n/a	n/a
SADA SADA	7/26/2010	2 2	171		142 90.0							0.02	22.5	5700	2620	n/a	n/a
JANA	1/20/2010	5	141	COIVIE	03.0	טא	טא		טא	ND		5.21	22.0	5700	2030	ıı/a	ıı/a

Page 2 of 10

														т	TAL METALS	(ma/ka)										
				Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated
Facility	Sample Date		Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Conner	Conner	Lead	Lead	Mercury	Mercury	Molyhdenum	Molybdenum	Nickel
SARA	7/22/2016		1	61.7	90.6	ND	ND	201	206	ND	ND	12.6	12.4	103	81 7	26.5	26.2	5560	8160	647	544	n/a	n/a	12 5	14.7	104
SARA	7/22/2010		2	122	112	ND	ND	414	254	ND	1 46	17.0	11.4	02.0	172	20.5	20.2	7290	27100	690	400	n/a	n/a	13.5	14.7	121
SARA	7/22/2010		2	122	62.1	ND	8.22	414	334		4.45	17.0	12.0	02.9	80.2	25	20	13000	2/100	836	499	11/a	11/a	13.5	15.1	104
SARA	7/22/2016		3	99.5	62.1	ND	8.23	300	210	ND		10.1	15.9	151	69.2	31.2	24.5	13900	1050	721	097	11/d	11/d	17.0	15.0	194
SARA	7/22/2016		4	122	64.9	ND	ND	454	218	ND	ND	13.2	6.61	116	179	23.3	13	2030	6950	731	307	n/a	n/a	15.5	9.36	94
SARA	7/22/2016		5	64.8	217	ND	ND	260	301	ND	ND	7.21	8.94	316	444	18.9	115	9030	10700	246	415	n/a	n/a	11.6	13.6	186
SARA	7/22/2016	1 L	6	109	118	ND	ND	430	3//	ND	ND	12.9	12.6	497	230	21.7	20.2	3580	22300	481	495	n/a	n/a	22.3	16.9	304
SARA	//22/2016	1 L	/	96.8	95.3	ND	7.64	376	394	ND	ND	15.5	10.8	153	163	65.5	20.8	5450	6850	671	501	n/a	n/a	14.9	14	132
SARA	7/22/2016	1 L	8	74.9	132	ND	ND	600	466	ND	ND	17	11.9	166	79.2	22.7	38.5	3910	9260	610	365	n/a	n/a	16.8	10.6	130
SARA	7/22/2016	1 L	COMP	121	72.6	ND	ND	467	265	ND	ND	16.5	13.3	254	634	30.4	24.8	8040	10500	770	580	n/a	n/a	21.1	25.3	258
SARA	7/26/2016	2 L	1	111	137	ND	ND	325	350	ND	ND	7.99	ND	256	301	15.9	13.6	12500	8130	700	357	n/a	n/a	21.9	48.6	483
SARA	7/26/2016	2 L	2	91.8	38.2	8.24	ND	473	431	ND	ND	8.62	7.13	156	98	19.4	15.6	78000	4790	530	527	n/a	n/a	14.8	12.2	173
SARA	7/26/2016	2 L	3	74.8	88	ND	ND	371	327	ND	ND	11	ND	101	71.6	19.6	11.6	6000	7890	597	324	n/a	n/a	12.9	6.83	119
SARA	7/26/2016	2 L	4	184	305	ND	ND	403	193	ND	ND	7.39	ND	91	61	11.7	9.45	7470	15700	363	405	n/a	n/a	9.41	9.39	136
SARA	7/26/2016	2 L	5	110	182	ND	ND	432	436	ND	ND	ND	9.59	78.9	176	16.1	15.1	37900	9550	272	377	n/a	n/a	8.99	9.75	74.2
SARA	7/26/2016	2 L	6	64.4	71.6	ND	ND	398	218	ND	ND	11.7	ND	80.7	128	15.3	10.6	3540	12800	541	321	n/a	n/a	14	11.3	93.8
SARA	7/26/2016	2 L	7	81	95.7	ND	ND	227	144	ND	ND	10.3	ND	297	67.7	12.9	8.13	2900	1310	450	293	n/a	n/a	10.7	8.42	133
SARA	7/26/2016	2 L	8	74.3	84.4	ND	9.19	266	257	ND	ND	8.18	ND	102	72.7	15.8	20.6	6700	8080	919	545	n/a	n/a	10.2	12.3	88.7
SARA	7/26/2016	2 L	COMP	44.3	63.1	ND	6.4	255	206	ND	ND	8.73	8.6	127	83.9	10.1	14.2	11800	2770	381	487	n/a	n/a	9.07	10.7	102
SARA	7/25/2016	3 L	1	42.5	72.8	ND	8.79	168	288	ND	ND	ND	11.5	1510	152	19.2	21.7	6370	22000	327	682	n/a	n/a	8.41	13.3	63.4
SARA	7/25/2016	3	2	80.7	113	ND	ND	400	257	ND	ND	11.9	13.6	170	244	18.9	17.9	15200	14400	536	382	n/a	n/a	15.4	11.8	194
SARA	7/25/2016	3 1	3	249	373	ND	ND	234	273	ND	ND	9 77	8 14	338	483	14.3	14.1	12400	7300	518	506	n/a	n/a	12	18.5	178
SARA	7/25/2010	3 1	3	50.5	106.6	ND	ND	254	273	ND	ND	9.79	0.14	441	326	19.4	17.6	7220	2550	149	500	n/a	n/a	14.6	15.5	215
SARA	7/25/2010	3 L	4 E	50.5	62.7	ND	7 19	203	323	ND	ND	10.7	7.59	121	162	16.5	27.2	7330	5020	719	600	n/a	n/a	14.0	17.2	07.1
SARA	7/25/2010	3 L	5	69	03.7	ND	7.18	338	328	1.01	ND	10.7	7.56	121	102	10.5	27.3	7940	3030	718	690	11/a	11/a	13.4	17.3	37.1
SARA	7/25/2016	3 L	6	66.8	144	ND	ND	312	353	1.91	ND	10.6	11	152	459	20.1	35.3	8240	3380	634	639	n/a	n/a	13.1	20.9	138
SARA	//25/2016	3 L	/	55.7	43.2	ND	ND	389	238	ND	ND	13.7	7.78	335	232	24	14.8	9070	12100	848	483	n/a	n/a	18.6	14.4	231
SARA	7/25/2016	3 L	8	61.5	93	ND	6.57	491	243	ND	ND	13.9	9.59	484	326	25.5	37.5	2810	5760	599	539	n/a	n/a	19.8	19.4	286
SARA	7/25/2016	3 L	COMP	68.7	52.8	ND	ND	385	273	ND	ND	14	10.4	517	230	24.6	16	3470	11300	669	491	n/a	n/a	23.8	12.7	247
SARB	7/20/2016	1 H	1	258	ND	ND	ND	384	261	ND	ND	ND	ND	5500	188	92.6	99.8	8810	9780	1060	740	2.75	2.12	ND	ND	3290
SARB	7/20/2016	1 H	2	76.6	ND	ND	ND	389	233	ND	ND	ND	ND	661	240	ND	29.3	10400	3630	1300	1520	3.16	1.86	ND	ND	721
SARB	7/20/2016	1 H	3	ND	ND	ND	ND	414	302	ND	ND	ND	ND	186	734	ND	144	39900	23000	1260	862	3.29	2.36	ND	ND	258
SARB	7/20/2016	1 H	4	ND	ND	ND	ND	415	126	ND	ND	ND	ND	233	219	ND	ND	7660	20800	1470	821	3.29	2.89	ND	ND	357
SARB	7/20/2016	1 H	5	ND	ND	ND	ND	379	134	ND	ND	ND	ND	746	586	494	ND	6480	5360	2120	1530	4.13	2.86	ND	ND	571
SARB	7/20/2016	1 H	6	ND	ND	ND	ND	495	147	ND	ND	ND	ND	294	1180	51.4	ND	4570	15000	1950	1290	3.84	3.05	ND	93.9	350
SARB	7/20/2016	1 H	7	119	ND	ND	ND	360	155	ND	ND	ND	ND	894	200	219	ND	14800	3710	1820	1010	3.9	2.67	ND	ND	629
SARB	7/20/2016	1 H	8	ND	58.2	ND	ND	381	108	ND	ND	ND	ND	241	1660	ND	40.4	15500	3220	1520	1050	4.5	2.86	ND	ND	387
SARB	7/20/2016	1 H	COMP	ND	ND	ND	ND	278	137	ND	ND	ND	ND	283	479	57.5	ND	6900	4000	1790	1040	3.57	2.37	ND	ND	510
SARB	7/28/2016	2 H	1	76.6	105	15.4	13.4	746	406	ND	ND	24.6	17.1	459	613	35.9	32	12400	8470	616	545	3.29	2.02	39.1	30.8	321
SARB	7/28/2016	2 Н	2	119	89.5	9.31	15.5	724	221	ND	ND	13.8	20	111	228	17.5	23.9	15500	10700	482	604	0,652	1.98	20.8	24.1	128
SARB	7/28/2016	2 H	3	158	244	ND	8,08	775	427	ND	ND	13.5	13.6	192	513	24.7	19.3	14600	8730	477	503	1.62	14.6	23	18.9	231
SARR	7/28/2016	2 H	4	233	221	16.5	12.8	603	374	ND	ND	21.9	15.9	698	128	26	18.2	8540	12200	562	542	1 24	1 89	34.5	20.7	384
SARP	7/28/2016	2 H	5	127	104	ND	16.4	466	214	ND	ND	11.3	18.2	1180	225	145	48.7	33900	2720	604	534	1.52	1 73	50.7	22.7	547
CADD	7/28/2016	2 II 2 L	6	50.0	90.2	12.7	10.4	602	214			20.2	17 5	256	223	140	21	12000	17000	524	861	E 0	2.73	29.7	22.7	25/
CADD	7/20/2010	2 ^Π	7	50.0	147	12.7	7 71	210	510			20.5	10.0	200	234	170	20 0	10500	17000	724	1001	3.5	2.01	20.7	20.2	101
SARD	7/28/2010	2 1	/	159.9	147	12.7	10.4	210	412		ND	27.4	15.5	223	536	178	20.0	16300	1/900	730	434	2.58	2.41	24.7	20.2	202
SARD	7/20/2010	2 1	0	130	255	10.2	10.4	01/	412			12.0	10.7	200	122	22.3	49.0	14100	10000	534	507	2.00	2.01	22.2	34.3	203
SARB	//28/2016	2 H	COIVIP	97.5	255	10.3	10.1	452	407	ND	ND	13.8	10.3	510	123	20.1	18.1	14100	16000	510	561	1.88	1.5	32.9	14.8	269
SARB	8/4/2016	3 H	1	138	81.4	9.48	18.9	4/1	379	ND	ND	31.9	17.5	165	116	28.5	35	14300	/020	1670	769	3.33	2.52	20	19.5	552
SARB	8/4/2016	3 H	2	233	130	ND	21.3	407	463	ND	ND	13.9	23.7	151	340	29.9	43.5	7510	23600	530	770	1.66	2.2	13	25.6	182
SARB	8/4/2016	3 H	3	143	145	11.3	14.9	496	399	ND	ND	25.5	22.6	196	853	84.9	46.5	13300	6500	891	5460	2.23	1.69	21.5	26.6	197
SARB	8/4/2016	3 Н	4	179	119	17	16.5	408	317	ND	ND	23.9	21.5	219	160	171	40.4	27600	7980	679	809	2.11	2.1	26.1	18.5	247
SARB	8/4/2016	3 H	5	110	116	ND	19.5	510	346	ND	ND	17.5	21.2	826	232	24.3	59.4	11700	6780	2560	652	2.7	2.15	19.5	23.9	429
SARB	8/4/2016	3 H	6	168	127	9.91	16.4	568	458	ND	ND	26.2	46.1	954	555	57.3	114	25000	6750	782	810	5.5	2.07	77.9	25.5	713
SARB	8/4/2016	3 H	7	168	134	8.48	18.1	672	383	ND	ND	34.3	28.1	1400	341	3250	29.4	15000	57000	838	652	0.724	3.41	275	34.1	2690
SARB	8/4/2016	3 H	8	120	91.7	12.8	18	438	287	ND	ND	24.4	23.2	278	642	309	31.2	13800	16900	724	2320	2.55	2.15	25	26.8	208
SARB	8/4/2016	3 H	COMP	139	169	16.8	13.3	558	346	ND	ND	29.7	21.1	246	177	57.6	23.6	7060	49100	1530	583	3.44	1.78	30.3	19.9	226

									TOTA	L METALS (m	g/kg)					TOTAL PC	Bs (mg/kg)
					Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Nickel	Selenium	Selenium	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Total PCBs	Total PCBs
SARA	7/22/2016	1	L	1	92.9	ND	ND	ND	ND	ND	ND	ND	18	5630	4540	n/a	n/a
SARA	7/22/2016	1	L	2	137	ND	ND	ND	9.12	ND	ND	6.85	20.8	6030	3980	n/a	n/a
SARA	7/22/2016	1	L	3	275	ND	ND	7.7	ND	ND	ND	7.34	23.2	7360	6380	n/a	n/a
SARA	7/22/2016	1	L	4	117	ND	ND	ND	ND	ND	ND	ND	10.8	5830	3670	n/a	n/a
SARA	7/22/2016	1	L	5	256	ND	ND	ND	8.62	ND	ND	ND	33.8	3040	4540	n/a	n/a
SARA	7/22/2016	1	L	6	266	ND	ND	ND	ND	ND	ND	6.94	18.3	6030	4850	n/a	n/a
SARA	7/22/2016	1	L	7	137	ND	ND	9.82	ND	ND	ND	6.65	29	6010	4510	n/a	n/a
SARA	7/22/2016	1	L	8	85	ND	ND	ND	ND	ND	ND	ND	18.4	5800	3200	n/a	n/a
SARA	7/22/2016	1	L	COMP	739	ND	ND	11.2	ND	ND	ND	7.24	26.2	7670	5710	n/a	n/a
SARA	7/26/2016	2	L	1	238	ND	ND	ND	38.9	ND	ND	ND	22.3	4300	3230	n/a	n/a
SARA	7/26/2016	2	L	2	115	ND	ND	11.1	ND	ND	ND	18.8	ND	4360	3920	n/a	n/a
SARA	7/26/2016	2	L	3	91.1	ND	ND	ND	ND	ND	ND	ND	19.5	4500	2340	n/a	n/a
SARA	7/26/2016	2		4	50.7	ND	ND	ND	ND	ND	ND	ND	12	3880	3620	n/a	n/a
SARA	7/26/2016	2	-	5	114	ND	ND	41.2	ND	ND	ND	ND	13.3	3610	3160	n/a	n/a
SARA	7/26/2016	2	-	6	104	ND	ND	ND	17.7	ND	ND	ND	22.1	4770	3240	n/a	n/a
SARA	7/26/2016	2	-	7	65.2	ND	ND	ND	ND	ND	ND	ND	14.1	2880	1960	n/a	n/a
SARA	7/26/2016	2		, 8	331	ND	ND	ND	ND	ND	ND	ND	31	4830	3150	n/a	n/a
SARA	7/26/2016	2		COMP	90.1	ND	ND	ND	6.24	ND	ND	ND	27.9	3420	3680	n/a	n/a
SARA	7/26/2010	2		1	218	ND	ND	ND	ND	ND	ND	ND	16.6	2500	5740	n/a	n/a
SARA	7/25/2010	2		2	05	ND	ND	ND	7.92	ND	ND	7.05	22.2	5040	2960	n/a	n/a
SARA	7/25/2010	2	L 1	2	35				7.92	ND	ND	7.03	15 1	2220	2000	11/a	n/a
SARA	7/25/2010	2	L 1	3	177.2					ND	ND	6.03	14	3530	4250	11/a	n/a
SARA	7/25/2010	2	L 1	4 E	1/7.5			7		ND	ND	0.92	14	3020	4250	11/a	n/a
SARA	7/25/2010	2	L .	5	193	ND	ND	,	7.01	ND	ND	ND	14.1	4070	4210	11/a	II/a
SARA	7/25/2016	3	L	5	493	ND	ND	6.92	7.81	ND	ND	5.87	16.7	4720	5280	n/a	n/a
SARA	7/25/2016	3	L	/	328	ND	ND	14.6	ND	ND	ND	7.35	13.7	5840	3800	n/a	n/a
SARA	7/25/2016	3	L .	8	187	ND	ND	ND	ND	ND	ND	8.43	16.8	6280	4350	n/a	n/a
SARA	7/25/2016	3	L	COMP	159	ND	ND	ND	ND	ND	ND	9.45	16.8	6070	3910	n/a	n/a
SARB	7/20/2016	1	н	1	221	ND	ND	ND	ND	ND	ND	ND	ND	8960	/120	ND	ND
SARB	7/20/2016	1	н	2	240	ND	ND	ND	ND	ND	ND	ND	ND	11100	6610	ND	ND
SARB	//20/2016	1	н	3	373	ND	ND	ND	ND	ND	ND	ND	ND	9490	11700	ND	ND
SARB	7/20/2016	1	н	4	350	ND	ND	ND	ND	ND	ND	ND	ND	13600	8180	ND	ND
SARB	7/20/2016	1	н	5	601	ND	ND	ND	ND	ND	ND	ND	ND	15500	9660	ND	ND
SARB	7/20/2016	1	н	6	909	ND	ND	ND	ND	ND	ND	ND	ND	15600	11000	ND	ND
SARB	7/20/2016	1	н	7	318	ND	ND	ND	ND	ND	ND	ND	ND	15300	10400	ND	ND
SARB	7/20/2016	1	н	8	889	ND	ND	ND	ND	ND	ND	ND	34	13300	7810	ND	ND
SARB	7/20/2016	1	Н	COMP	400	ND	ND	ND	ND	ND	ND	ND	ND	15000	10600	ND	ND
SARB	7/28/2016	2	н	1	325	ND	ND	ND	ND	ND	ND	31.6	39	8600	6380	ND	ND
SARB	7/28/2016	2	Н	2	220	ND	ND	ND	41.2	ND	ND	14.3	42.4	6240	8480	ND	ND
SARB	7/28/2016	2	Н	3	593	ND	ND	14.4	ND	ND	ND	20.3	28.9	7250	8380	ND	ND
SARB	7/28/2016	2	н	4	181	ND	ND	ND	13.7	ND	ND	20.6	39.2	8420	6580	ND	ND
SARB	7/28/2016	2	н	5	200	ND	ND	71.7	ND	ND	ND	20.6	47.5	3520	6400	ND	ND
SARB	7/28/2016	2	Н	6	256	ND	ND	12.6	20.1	ND	ND	23.4	38.3	7280	6320	ND	ND
SARB	7/28/2016	2	Н	7	269	8.68	ND	17.8	8.81	ND	ND	39.9	18.5	8270	5950	ND	ND
SARB	7/28/2016	2	Н	8	396	ND	ND	ND	744	ND	ND	14.5	35.2	10000	5920	ND	ND
SARB	7/28/2016	2	Н	COMP	91	ND	ND	ND	ND	ND	ND	27.2	22	5730	5300	ND	ND
SARB	8/4/2016	3	Н	1	149	ND	ND	9.74	ND	ND	ND	14.6	51.6	6870	6400	ND	ND
SARB	8/4/2016	3	Н	2	415	ND	ND	9.37	13.2	ND	ND	9	38.3	4920	7270	ND	ND
SARB	8/4/2016	3	Н	3	716	ND	ND	18.1	8.33	ND	ND	16.4	33.4	7430	6030	ND	ND
SARB	8/4/2016	3	Н	4	167	ND	ND	19.3	8.92	ND	ND	15.3	40.7	5930	5330	ND	ND
SARB	8/4/2016	3	Н	5	550	ND	ND	13.7	25.6	ND	ND	14.3	34.4	4290	5660	ND	ND
SARB	8/4/2016	3	Н	6	429	ND	ND	ND	12.5	ND	ND	21.6	41	16300	8740	ND	ND
SARB	8/4/2016	3	Н	7	300	ND	ND	ND	9.54	ND	ND	152	34.7	8310	5240	ND	ND
SARB	8/4/2016	3	Н	8	380	10	ND	12.3	9.4	ND	ND	24.1	37.8	6230	5330	ND	ND
SARB	8/4/2016	3	Н	COMP	159	ND	ND	71.5	ND	ND	ND	20.9	31.6	10600	5480	ND	ND

Page 4 of 10

														т	OTAL METALS	(ma/ka)										
				Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated
Facility	Sample Date		Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Bervllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Conner	Conner	Lead	Lead	Mercury	Mercury	Molyhdenum	Molybdenum	Nickel
SART	7/15/2016		1	102	97.9	ND	ND	2/19	172	ND	ND	ND	ND	72.7	/22	6 12	10.5	19200	8600	197	221	1 55	1.82	9.99	11.2	109
SART	7/15/2010		2	105	37.5	ND	ND	245	1/2	ND	ND	9 66	ND	07.9	432	12.1	10.5	2620	E220	202	221	1.55	2.21	14 5	11.2	67.1
SANT	7/15/2010		2	64.1	40.8	ND	ND	335	140	ND	ND	6.00	ND	57.8	70.1	13.1	10	3030	3230	305	239	4.20	2.21	14.5	10.4	71.0
SART	7/15/2016		3	04.1 49.5	92.3	ND	ND	200	149	ND		0.91	ND 9.41	69.7	70.1	12.4	9.5	4500	402	365	289	2.47	2.01	12.4	10.4	71.9
SART	7/15/2016		4	48.5	81.8	ND	ND	342	194	ND	ND	7.08	8.41	83.3	/8.4	12.1	10.5	9890	7200	341	282	2.58	1.97	12.9	13.2	/2.1
SART	7/15/2016		5	106	153	ND	ND	317	255	ND	ND	7.11	ND	/3.5	1/2	12.8	20.2	4180	/300	357	251	2.84	1.88	13.7	22.4	80.0
SART	7/15/2016	1 H	6	85	67.3	ND	ND	337	132	ND	ND	ND	ND	49.8	69.5	9.66	10.1	1030	962	308	301	2.92	2.99	10.2	11.4	47.5
SART	7/15/2016	1 H	/	95.2	34.6	ND	ND	337	139	ND	ND	6.64	ND	2//	165	10.6	10	9870	1/20	305	248	2.7	1.43	10.8	13.7	/8.3
SART	//15/2016	1 H	8	112	74.2	ND	ND	246	97.9	ND	ND	6.18	ND	67.1	59.3	9.26	9.36	2840	1420	332	333	2.83	1.3	9.28	11.8	50.9
SARI	//15/2016	1 H	COMP	34.8	77.3	ND	ND	218	180	ND	ND	6.77	ND	152	45.4	10.5	8.11	789	5160	313	244	2.18	1.76	10.8	7.94	51.3
SART	7/21/2016	2 H	1	45.6	43	ND	ND	253	84.4	ND	ND	ND	ND	46.2	52	ND	ND	2550	5640	177	136	1.69	0.767	6.21	7.07	79.1
SART	7/21/2016	2 H	2	40.7	63.8	8.4	12.2	243	90.4	ND	ND	6.49	7.74	186	96.4	12	10	992	6170	320	269	7.93	1.43	12.7	12	157
SART	7/21/2016	2 H	3	48.3	33.7	ND	12.1	154	54.1	ND	ND	ND	ND	53.8	56.6	8.81	9.42	2420	1920	241	239	1.97	1.44	9.04	10.7	103
SART	7/21/2016	2 H	4	108	105	9.6	11.4	229	52.1	ND	ND	5.85	ND	74.9	53.4	9.48	20.8	3310	3110	276	210	2.04	1.28	9.42	8.82	61.8
SART	7/21/2016	2 H	5	35.6	40.2	ND	7.43	217	38.4	ND	ND	ND	ND	70.6	72.5	10.8	ND	1200	2120	329	143	3.96	1.6	10.3	NDN	61.7
SART	7/21/2016	2 H	6	72.1	25.9	ND	7.14	169	82	ND	ND	ND	ND	43.2	132	11.4	7.36	4500	2810	256	239	1.85	2.35	NDN	8	38.4
SART	7/21/2016	2 H	7	58.6	70	ND	9.44	140	92.8	ND	ND	ND	ND	20.7	105	ND	8.48	3240	4390	120	236	2.56	1.27	NDN	9.19	19.8
SART	7/21/2016	2 H	8	40.3	74.8	ND	10.4	267	64.7	ND	ND	6.5	7.08	475	68	12.5	20.4	2620	1730	355	297	1.5	1.94	13.3	11.2	69
SART	7/21/2016	2 H	COMP	92	118	6.44	10.2	320	68.6	ND	ND	7.03	6.84	72.9	54.6	11.4	10.71	10700	3150	334	274	2.56	1.55	12.4	10.2	63.5
SART	7/29/2016	3 H	1	83.9	44.3	ND	17.3	409	155	ND	ND	7.55	8.58	389	80.1	21.5	14.6	41400	11800	305	213	1.91	2.04	38.4	38.8	282
SART	7/29/2016	3 H	2	41.5	140	12.1	12.7	335	210	ND	ND	9.06	11.1	152	66.3	22	13	2360	622	374	402	2.26	2.56	16.4	14	120
SART	7/29/2016	3 H	3	410	64.5	8.1	11.2	440	224	ND	ND	7.74	12.1	245	96	12.4	11.3	3260	8090	368	315	2.15	2.2	12.9	13.2	78.8
SART	7/29/2016	3 H	4	163	84.5	8.31	18.5	487	192	ND	ND	10.3	11.6	237	125	26.8	616	8140	11700	470	337	2.72	1.41	51.8	12.5	334
SART	7/29/2016	3 H	5	69.2	57.6	9.68	12	452	242	ND	ND	57.3	11.9	355	98.3	18.4	30.5	11400	8260	545	346	3.42	2	47.1	13	323
SART	7/29/2016	3 Н	6	101	55.1	12.5	17.7	446	250	ND	ND	15.1	11.5	233	88.2	21.9	13.9	4370	2180	648	404	3.63	2.4	20.6	13.8	300
SART	7/29/2016	3 Н	7	64.7	50.5	55.9	12.4	384	212	ND	ND	11.2	11.9	148	124	13.4	12.9	6000	1470	434	420	1.67	1.46	13.6	13.5	120
SART	7/29/2016	3 H	8	113	52.2	9.01	15	423	140	ND	ND	17	11.9	169	70.5	18.1	12	4600	1620	572	328	2.87	1.69	21.6	13.7	138
SART	7/29/2016	3 Н	COMP	246	69.9	95	11 1	540	186	ND	ND	22.1	9.62	168	58	19.4	12.3	3970	2950	607	289	2 37	1.66	19.5	10.1	156
SMM	7/23/2010	<u>з</u> н 1 н	1	ND	28	ND	ND	715	293	ND	ND	ND	27.3	685	840	88	69.8	19800	13100	1150	1140	2.84	2 73	ND	ND	925
SMM	7/21/2016	1 H	2	ND	ND	ND	ND	226	325	ND	ND	ND	ND	625	351	86.5	50.2	6200	8320	1340	1610	21	2.56	ND	ND	540
SMM	7/21/2016	1 H	3	27.5	ND	ND	ND	335	220	ND	ND	ND	ND	203	227	52.8	51	10600	28500	2280	2220	2.83	17	ND	ND	670
SMM	7/21/2010	1 H	J 4	ND	ND	ND	ND	610	/08	ND	ND	ND	ND	203	005	52.0	56	44000	1/1500	2560	2050	4.32	2.72	120	ND	990
SNAN	7/21/2010		4 E	ND	22.2	ND	ND	744	400	ND	ND		ND	1900	335	97.4	30	12400	22000	1840	1270	4.32	0.051	120	ND	1050
SIVIIVI	7/21/2010		5	ND	33.3	ND	ND	744	429	ND	ND	ND	ND	1300	140	37.4	20.2	11700	10000	1040	592	2.71	0.951	ND	ND	214
SIVIIVI	7/21/2010		0	ND CO	89.5	ND	ND	347	420	ND	ND	ND	ND	138	149	2//	29.5	11/00	10300	1470	363	1.71	0.845	ND	12.2	214
SIVIIVI	7/21/2016		/	05	32.0	ND	ND	785	010	ND	ND	ND	ND	1230	270		30.5	11600	20700	1470	1050	1.60	1.08	ND	43.3	910
SIVIIVI	7/21/2016		8	35.5	ND 45.2	ND	ND	800	140	ND	ND	ND	ND	891	370	45.4	33.5	15100	5380	2450	593	0.881	0.941	ND	ND	003
SIVIN	7/21/2016	1 H	COMP	ND	45.2	ND	ND	145	315	ND	ND	ND	ND	263	682	55	47.7	8150	5700	1240	1320	1.74	1.73	ND	ND	338
SIVIIVI	7/28/2016		1	11/	5/.0	27.1		3/1	549		ND			389	398	53.2	125	10800	8590	2080	2340	0.73	0.765			301
SMIM	7/28/2016		2	224		ND	ND	1230	518	ND	ND	ND	ND	540	301	39.2	60.1	14500	14000	2310	/16	1.38	0.928	ND	ND	429
SMM	7/28/2016	2 H	3	26.5	29.1	ND	ND	328	419	ND	ND	ND	ND	360	639	32	31.6	8230	1010	628	514	1.08	1.28	ND	ND	258
SMM	//28/2016	2 H	4	116	138	ND	ND	268	337	ND	ND	ND	ND	1190	286	220	26.6	31600	32400	872	1560	1.71	1.22	ND	ND	975
SMM	7/28/2016	2 H	5	59.5	39.1	ND	ND	715	240	ND	ND	ND	ND	363	226	36.8	66.2	22400	4920	1430	758	1.17	0.989	ND	ND	348
SMM	7/28/2016	2 H	6	109	52.7	ND	ND	618	361	ND	ND	25	ND	255	244	34	54.5	31500	17900	843	414	1.49	0.483	ND	ND	353
SMM	7/28/2016	2 H	7	331	122	ND	ND	314	326	ND	ND	ND	ND	1060	149	92.8	995	8430	16700	1720	5440	1.73	0.957	ND	ND	780
SMM	7/28/2016	2 H	8	169	84.8	ND	ND	359	217	8.54	ND	ND	ND	653	181	35.4	ND	25400	17500	4800	1870	2.28	1.04	ND	ND	379
SMM	7/28/2016	2 H	COMP	92.7	56	ND	ND	358	159	ND	ND	ND	ND	293	194	42.6	28.1	16000	39400	1310	933	1.15	0.897	ND	ND	311
SMM	8/2/2016	3 H	1	83.4	97.7	ND	ND	431	226	ND	ND	ND	ND	134	851	ND	35.6	7790	23200	1150	1920	2.04	1.13	ND	77.9	171
SMM	8/2/2016	3 H	2	25.5	55.3	40.3	ND	150	340	ND	ND	ND	ND	765	116	45.5	ND	6780	3250	2130	705	1.86	1.15	61	ND	743
SMM	8/2/2016	3 H	3	29.3	49.8	ND	ND	396	368	ND	ND	ND	ND	194	543	ND	28.5	2630	8610	338	656	1.89	2.02	ND	421	159
SMM	8/2/2016	3 H	4	51.6	ND	ND	ND	831	250	ND	ND	ND	ND	149	318	ND	37.6	19600	22700	982	666	1.39	1.25	ND	ND	147
SMM	8/2/2016	3 H	5	43.5	27.6	ND	ND	490	146	ND	ND	ND	ND	810	298	43.3	ND	18300	4960	835	912	2.24	1.66	ND	ND	590
SMM	8/2/2016	3 H	6	28.5	61.1	ND	ND	161	188	ND	ND	ND	ND	661	924	27	38.8	6730	14400	556	799	0.8	1.39	61.8	ND	563
SMM	8/2/2016	3 H	7	39.5	34.8	27.8	ND	196	123	ND	ND	ND	ND	1530	328	66.3	172	21900	20900	1560	496	7.72	0.743	34.3	ND	908
SMM	8/2/2016	3 H	8	53.8	59.6	ND	ND	585	461	ND	ND	ND	ND	428	859	31.8	72.6	21400	35800	1120	839	1.13	1.14	ND	ND	966
SMM	8/2/2016	3 H	COMP	116	ND	ND	ND	574	209	ND	ND	ND	ND	1380	796	45.9	51.2	21400	7780	987	1190	1.1	1.35	48.4	ND	987
					•	•					•														•	

					1				TOTA	L METALS (m	g/kg)					TOTAL PC	Bs (mg/kg)
					Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Nickel	Selenium	Selenium	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Total PCBs	Total PCBs
SART	7/15/2016	1	Н	1	208	ND	ND	ND	ND	ND	ND	ND	13.8	3450	2010	ND	ND
SART	7/15/2016	1	н	2	123	ND	ND	10.8	ND	ND	ND	ND	19.5	3910	2410	ND	ND
SART	7/15/2016	1	н	3	61.1	ND	ND	ND	ND	ND	ND	ND	18.2	3460	2700	ND	ND
SART	7/15/2016	1	н	4	71.8	ND	ND	ND	ND	ND	ND	ND	17.9	3010	2780	ND	ND
SART	7/15/2016	1	н	5	112	ND	ND	ND	ND	ND	ND	ND	15.1	3580	2260	ND	ND
SART	7/15/2016	1	н	6	58.3	ND	ND	ND	ND	ND	ND	ND	28.7	3060	2600	ND	ND
SART	7/15/2016	1	н	7	94.6	ND	ND	11.3	ND	ND	ND	ND	38	2750	2230	ND	ND
SART	7/15/2016	1	н	8	113	ND	ND	ND	ND	ND	ND	ND	23.1	2480	1930	ND	ND
SART	7/15/2016	1	н	COMP	45.7	ND	ND	ND	ND	ND	ND	ND	16.4	2920	2050	ND	ND
SART	7/21/2016	2	н	1	32	6.55	ND	ND	ND	ND	ND	ND	10.8	1630	1250	ND	ND
SART	7/21/2016	2	н	2	77.7	10.7	10.1	8.65	ND	ND	ND	6.89	29.2	3060	2540	ND	ND
SART	7/21/2016	2	н	3	64.2	5.75	7.28	ND	ND	ND	ND	ND	33.2	2380	2210	ND	ND
SART	7/21/2016	2	н	4	43.4	7.34	7.96	ND	ND	ND	ND	ND	28	2490	1980	ND	ND
SART	7/21/2016	2	н	5	44.1	6.61	ND	ND	ND	ND	ND	ND	12.5	3080	1280	ND	ND
SART	7/21/2016	2	н	6	40	ND	ND	ND	ND	ND	ND	ND	16.8	1810	2020	ND	ND
SART	7/21/2016	2	н	7	78.2	ND	6.96	10.6	ND	ND	ND	ND	21.3	1240	2190	ND	ND
SART	7/21/2016	2	н	8	58.2	8.49	7.86	8.71	7.11	ND	ND	ND	26.3	3060	2620	ND	ND
SART	7/21/2016	2	н	COMP	73.5	10.7	9.61	ND	ND	ND	ND	6.73	26.4	3030	2460	ND	ND
SART	7/29/2016	3	н	1	47.9	11 1	8 65	ND	ND	ND	ND	9.73	48 1	2880	2190	ND	ND
SART	7/29/2016	3	н	2	72	10.6	9.1	ND	ND	ND	ND	12.7	31.7	3280	3380	ND	ND
SART	7/29/2016	3	н	3	92.3	9.56	9.38	11.5	19.7	ND	ND	11	25.9	3150	3150	ND	ND
SART	7/29/2010	2	- н - н	3	100	10.9	3.38	6.49	7.84	ND	ND	12.6	23.5	4390	2050	ND	ND
SART	7/29/2016	3	н	5	93.5	14.3	11.3	0.45 ND	ND	ND	ND	15.6	23.7	5570	3040	ND	ND
SART	7/23/2010	2		5	72.9	12.2	11.5			ND	ND	10	23.7	5570	2420		ND
SART	7/29/2010	2	п ц	7	72.8	13.3	0.24			ND	ND	10 2	27.8	3020	2020		
SART	7/29/2010	2	п ц	/ 0	90.8	3.37	9.34	11.2	16.0	ND	ND	10.2	20 /	5700	2020		
SART	7/29/2010	2		o COMD	61.3	10.4	3.87	0.24	10.9	ND	ND	15.5	30.4	5580	2050	ND	ND
SARI	7/29/2016	3			61.5	11.0	7.76	9.24	ND	ND	ND	10.1	22.2	15200	2460	ND	ND
SNANA	7/21/2010	1	п ц	2	343	ND				ND	ND		25.5	9750	0010		
SIVIIVI	7/21/2016	1		2	455	ND	ND	ND	ND	ND	ND	ND	20.8	9750	10400	ND	ND
SIVIIVI	7/21/2016	1		3	335	ND	ND	ND	ND	ND	ND		30.2	12400	10400	ND	ND
SIVIIVI	7/21/2016	1	н	4	740	ND	ND	ND	ND	ND	ND	50.5	ND 20	12600	1/600	ND	ND
SIVIIVI	7/21/2016	1	н	5	230	ND	ND	ND	ND	ND	ND	ND	39	15800	8630	ND	ND
SIVIIVI	7/21/2016	1	н	6	181	ND	ND	ND	ND	ND	ND	ND	53.3	11700	9260	ND	ND
SIVIIVI	7/21/2016	1	н	/	595	ND	ND	ND	ND	ND	ND	ND	36.3	18300	12200	ND	ND
SIVIIVI	7/21/2016	1	н	8	308	ND	ND	ND	ND	ND	ND	ND	61.8	10600	6280	ND	ND
SIVIIVI	7/21/2016	1	н	COMP	480	ND	ND	ND	ND	ND	ND	33.3	39	10400	11400	ND	ND
SIVIIVI	7/28/2016	2	н	1	391	ND	ND	ND	ND	ND	ND	ND	29.3	6100	8640	ND	ND
SIVIN	7/28/2016	2	н	2	3610	ND	ND	ND	ND	ND	ND	ND	54.3	/160	4080	ND	ND
SIVIN	7/28/2016	2	н	3	399	ND	ND	ND	ND	ND	ND	ND	31.8	4/80	5360	ND	ND
SIVIN	7/28/2016	2	н	4	219	ND	ND	ND	ND	ND	ND	ND	31.9	1//00	5/00	ND	ND
SMM	7/28/2016	2	н	5	219	ND	ND	28.8	ND	ND	ND	ND	33.4	9080	7180	ND	ND
SMM	7/28/2016	2	н	6	269	ND	ND	ND	ND	ND	ND	ND	ND	12500	6050	ND	ND
SMM	7/28/2016	2	н	7	2190	ND	ND	ND	ND	ND	ND	ND	29.1	10100	7020	ND	ND
SMM	7/28/2016	2	н	8	204	ND	ND	ND	ND	ND	ND	ND	37.6	11600	4690	ND	ND
SMM	7/28/2016	2	Н	COMP	251	ND	ND	ND	ND	ND	ND	ND	38.4	9370	8410	ND	ND
SMM	8/2/2016	3	Н	1	1110	ND	ND	ND	ND	ND	ND	ND	26.3	11700	10700	ND	ND
SMM	8/2/2016	3	н	2	117	ND	ND	ND	ND	ND	ND	ND	34.8	16300	5780	ND	ND
SMM	8/2/2016	3	н	3	531	ND	ND	ND	ND	ND	ND	ND	27.5	7490	8440	ND	ND
SMM	8/2/2016	3	Н	4	306	ND	ND	ND	ND	ND	ND	ND	28.3	8190	9570	ND	ND
SMM	8/2/2016	3	н	5	238	ND	ND	ND	ND	ND	ND	ND	56.4	11800	7570	ND	ND
SMM	8/2/2016	3	Н	6	528	ND	ND	ND	ND	ND	ND	35.3	ND	6710	11200	ND	ND
SMM	8/2/2016	3	н	7	263	ND	ND	29	ND	ND	ND	ND	35.1	12000	6560	ND	ND
SMM	8/2/2016	3	н	8	498	ND	ND	ND	ND	ND	ND	ND	28.8	9560	5280	ND	ND
SMM	8/2/2016	3	н	COMP	537	ND	ND	ND	ND	ND	ND	ND	42.9	9070	11500	ND	ND

Page 6 of 10

														т	OTAL METALS	(mg/kg)										
				Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated
Facility	Sample Date	Day Dosage	Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Bervllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel
SMM	7/22/2016		1	62.8	ND.	ND	ND	648	253	ND	ND	ND	ND	665	461	59.3	50.1	19000	5530	1620	1630	n/a	n/a	ND	ND	525
SMM	7/22/2016	1 1	2	ND	ND	ND	ND	475	360	ND	ND	ND	ND	465	566	50	60.1	27800	24300	2950	1000	n/a	n/a	ND	ND	388
SMM	7/22/2016	1 1	3	ND	44.8	ND	ND	823	380	ND	ND	ND	ND	438	338	164	41.5	16000	4030	3530	1160	n/a	n/a	ND	ND	368
SMM	7/22/2010		1	32.6	71.9	ND	ND	721	581	ND	ND	ND	ND	373	536	63.1	56.3	11500	9490	1330	1240	n/a	n/a	ND	ND	346
SMM	7/22/2010			52.0	20.9	ND	ND	972	420	ND	ND	ND	ND	663	776	20.2	24.2	8060	11600	1990	1240	n/a	n/a	ND	ND	1060
SMM	7/22/2010		6	ND 54	29.0	ND	ND	1100	1200	ND	ND	ND	ND	952	522	33.3	20.2	2020	21000	1000	E20	n/a	n/a	ND	ND	E15
SMM	7/22/2010		7	ND	28.5	ND	ND	692	172	ND	ND	ND	ND	459	234	50.3	29.5	22400	7090	1350	21/0	n/a	n/a	ND	ND	365
SNANA	7/22/2010		, o	42.2	77.1	ND	ND	490	602	ND	ND	ND	ND	458	671	30.3	30.5	23400	9320	1330	2140	n/a	11/d n/a	ND	42.2	305
SNANA	7/22/2010		0	42.3	//.1	ND	ND	490	776	ND	ND	105	ND	493	265	44.5	25.1	15200	0510	1530	996	n/a	11/a	ND	42.3	520
SNANA	7/22/2010			155	42.1	ND	ND	472	204	ND	ND	103	ND	701	203	4/	33.1	13200	5510	1550	570	n/a	11/d	ND	ND	530
SIVIIVI	7/29/2016	2 L	1	157	36.3	ND	ND	4/3	204	ND	ND	ND	ND 10.2	701	488	71.6	34	7410	0830	2400	690	n/a	n/a	ND	ND	573
SIVIIVI	7/29/2016	2 L	2	ND 45.5	40.9	ND	ND	481	250	ND	ND	ND	40.2	526	239	70.9	30.9	6690	20000	2020	2310	n/a	n/a	ND	ND	531
SIVIIVI	7/29/2016	2 L	3	45.5	111	ND	ND	5/3	530	ND	ND	ND	ND	528	558	84.5	40	5900	23700	3130	1120	n/a	n/a	ND	ND	615
SIMIM	7/29/2016	2 L	4	ND	44.4	ND	ND	4/3	500	ND	ND	ND	121	308	241	/1.5	64	2750	10100	1890	1520	n/a	n/a	ND	ND	418
SMM	7/29/2016	2 L	5	41.9	82.9	ND	ND	664	482	ND	ND	ND	ND	3/1	661	66.4	62	5370	25400	2350	914	n/a	n/a	ND	33.9	474
SIMIM	7/29/2016	2 L	6	52.6	39.9	ND	ND	687	549	ND	ND	50.9	ND	554	815	47.6	67.5	5240	25600	1500	1610	n/a	n/a	/8.5	48.9	456
SMM	7/29/2016	2 L	7	33.6	55.7	ND	ND	384	409	ND	ND	ND	ND	1070	901	64.7	2110	4210	4620	1150	765	n/a	n/a	54.9	46.4	632
SMM	7/29/2016	2 L	8	52.1	ND	ND	ND	448	296	7.52	ND	ND	ND	1320	564	69.1	276	5960	44100	734	614	n/a	n/a	207	69.2	1050
SMM	7/29/2016	2 L	COMP	66.6	28.5	ND	ND	411	603	ND	ND	ND	ND	974	689	46.3	48.8	23800	30300	1630	984	n/a	n/a	46.3	28	631
SMM	8/3/2016	3 L	1	166	197	ND	ND	595	298	ND	ND	ND	ND	3200	630	104	39.8	43300	54800	1100	3850	n/a	n/a	64	ND	2450
SMM	8/3/2016	3 L	2	114	87	ND	ND	648	146	ND	ND	ND	ND	708	293	39.5	29.3	29500	58800	1300	2530	n/a	n/a	28.8	ND	458
SMM	8/3/2016	3 L	3	93	161	ND	ND	494	91.7	ND	ND	ND	ND	709	1640	56.1	46.8	34600	10800	870	812	n/a	n/a	26.8	41.1	391
SMM	8/3/2016	3 L	4	96.3	105	ND	ND	598	188	ND	ND	ND	ND	1030	2930	39.8	91.2	14300	2470	1380	977	n/a	n/a	54.6	303	1030
SMM	8/3/2016	3 L	5	57.2	59	ND	ND	662	340	ND	ND	ND	ND	326	458	32.1	44.8	31100	12400	1040	1170	n/a	n/a	ND	28	286
SMM	8/3/2016	3 L	6	59.3	62.7	ND	ND	530	139	ND	ND	ND	ND	324	705	42.5	42.9	21200	5990	1270	1170	n/a	n/a	578	ND	271
SMM	8/3/2016	3 L	7	133	70	58.9	ND	328	120	ND	ND	ND	ND	930	288	51.7	28.6	20300	3360	1080	574	n/a	n/a	42.6	351	1450
SMM	8/3/2016	3 L	8	133	115	ND	ND	373	336	ND	ND	ND	ND	856	1830	40	75.7	5650	23900	1110	1040	n/a	n/a	31	77.5	385
SMM	8/3/2016	3 L	COMP	121	38	ND	ND	505	308	ND	ND	ND	ND	638	383	35.3	37.5	35500	4950	993	938	n/a	n/a	ND	ND	373
SSP	7/18/2016	1 H	1	189	84.8	ND	ND	990	743	ND	ND	ND	ND	183	209	ND	ND	37800	9440	699	793	1.56	1.02	ND	ND	142
SSP	7/18/2016	1 H	2	157	113	ND	ND	1060	1040	ND	ND	ND	ND	278	564	ND	ND	34500	10000	528	634	1.6	1.14	ND	ND	320
SSP	7/18/2016	1 H	3	114	82.4	ND	ND	870	648	ND	ND	ND	ND	508	184	295	ND	8400	18200	1830	583	1.36	1.97	ND	ND	355
SSP	7/18/2016	1 H	4	97.9	109	ND	ND	1220	864	ND	ND	ND	ND	156	138	ND	ND	23200	11300	879	473	2.18	0.938	ND	ND	167
SSP	7/18/2016	1 H	5	63.8	96.6	ND	ND	585	643	ND	ND	ND	ND	141	484	27.1	ND	18800	17300	1000	728	4.13	1.52	ND	ND	162
SSP	7/18/2016	1 H	6	185	49	ND	ND	1040	585	ND	ND	ND	ND	177	224	ND	ND	5340	21900	657	879	1.41	1.64	ND	ND	179
SSP	7/18/2016	1 H	7	185	104	ND	ND	782	948	ND	ND	ND	ND	128	125	ND	ND	7050	17000	812	585	2.88	0.923	ND	ND	146
SSP	7/18/2016	1 H	8	162	52.6	ND	ND	870	872	ND	ND	ND	ND	343	424	33.8	ND	10200	5360	788	476	1.77	0.933	ND	ND	139
SSP	7/18/2016	1 H	COMP	95.7	77.4	ND	ND	477	707	ND	ND	ND	ND	215	129	ND	ND	21200	10400	606	639	1.41	1.6	ND	ND	188
SSP	7/25/2016	2 H	1	200	64.9	ND	ND	752	828	ND	ND	ND	ND	193	224	ND	ND	13800	7820	1130	496	3.31	1.15	ND	ND	222
SSP	7/25/2016	2 H	2	78.3	109	ND	ND	509	751	ND	ND	ND	ND	246	102	ND	ND	8590	4640	985	498	2.34	1.1	ND	ND	175
SSP	7/25/2016	2 H	3	76.7	112	ND	ND	733	329	ND	ND	ND	ND	282	394	383	ND	32900	8100	868	869	1.98	2.09	ND	59.1	443
SSP	7/25/2016	2 H	4	144	ND	ND	ND	790	847	ND	ND	ND	ND	444	468	ND	ND	13300	16800	939	735	2.13	2.78	ND	ND	241
SSP	7/25/2016	2 H	5	279	50.3	ND	ND	825	632	ND	ND	ND	ND	191	219	ND	ND	10800	15700	949	756	1.83	1.3	ND	ND	166
SSP	7/25/2016	2 H	6	77.2	60.7	ND	ND	497	828	ND	ND	ND	ND	399	521	ND	ND	11200	7820	1300	605	1.25	0.873	ND	27.1	287
SSP	7/25/2016	2 H	7	63.4	53.3	ND	ND	449	602	ND	ND	ND	ND	234	294	ND	ND	12600	12100	636	821	1.55	1.17	ND	ND	165
SSP	7/25/2016	2 H	8	65.8	84.4	ND	ND	928	675	ND	ND	ND	ND	1010	189	51.2	ND	13000	22000	962	456	2.3	1.43	97	ND	572
SSP	7/25/2016	2 H	COMP	99.4	74.4	ND	ND	441	579	ND	ND	ND	ND	251	282	ND	ND	15500	11300	3150	758	1.83	1.13	ND	ND	282
SSP	8/1/2016	3 H	1	68	ND	ND	ND	778	118	ND	ND	ND	ND	388	458	60.5	25.3	11700	20900	963	1440	5.25	2.62	ND	ND	270
SSP	8/1/2016	3 H	2	69.3	ND	ND	ND	698	58.5	ND	ND	ND	ND	1400	182	44	ND	15000	2720	990	595	3.71	2.1	35	ND	700
SSP	8/1/2016	3 Н	3	64.8	64.2	ND	ND	965	226	ND	ND	ND	ND	543	317	42	46.7	30500	21000	1580	837	3.69	2.76	31.5	ND	380
SSP	8/1/2016	3 Н	4	59.8	258	ND	ND	510	433	ND	ND	ND	ND	925	175	88.8	ND	3450	3330	1440	658	4.06	2.48	ND	ND	578
SSP	8/1/2016	3 Н	5	178	37.8	ND	ND	282	112	ND	ND	ND	ND	477	348	43.2	27.3	2000	15500	4200	998	4.12	3.08	ND	ND	382
SSP	8/1/2016	3 Н	6	145	ND	ND	ND	690	236	ND	ND	ND	ND	593	257	31.3	260	26000	14000	1230	2950	3.87	2.27	47.3	ND	453
SSP	8/1/2016	3 H	7	293	26.8	ND	ND	870	288	ND	ND	ND	ND	154	320	ND	30	5430	13500	1070	1550	2.9	2.71	233	ND	120
SSP	8/1/2016	3 H	8	46.3	ND	ND	ND	338	219	ND	ND	ND	ND	1240	179	36.8	ND	11300	5780	1160	1200	4.18	1.86	ND	ND	715
SSP	8/1/2016	<u>з</u> н	СОМР	50.5	84.8	ND	ND	398	315	ND	ND	ND	ND	425	455	32.3	ND	22300	4780	1740	750	3.56	2.05	ND	ND	538
	-, -, 2010	<u> </u>																								

									ΤΟΤΑ	L METALS (m	g/kg)					TOTAL PC	Bs (mg/kg)
					Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Nickel	Selenium	Selenium	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Total PCBs	Total PCBs
SMM	7/22/2016	1	L	1	566	ND	ND	32	ND	ND	ND	ND	42.3	17400	14800	n/a	n/a
SMM	7/22/2016	1	L	2	703	ND	ND	ND	ND	ND	ND	ND	ND	17600	10300	n/a	n/a
SMM	7/22/2016	1	L	3	325	ND	ND	ND	ND	ND	ND	ND	ND	10700	10900	n/a	n/a
SMM	7/22/2016	1	L	4	481	ND	ND	ND	ND	ND	ND	ND	26	16800	18700	n/a	n/a
SMM	7/22/2016	1	L	5	533	ND	ND	ND	ND	ND	ND	ND	ND	19000	14500	n/a	n/a
SMM	7/22/2016	1	1	6	418	ND	ND	ND	28.5	ND	ND	ND	33.3	21600	11900	n/a	n/a
SMM	7/22/2016	1	-	7	250	ND	ND	ND	ND	ND	ND	ND	36.3	24200	11700	n/a	n/a
SMM	7/22/2016	1	-	8	530	ND	ND	ND	ND	ND	ND	ND	38.8	7580	8080	n/a	n/a
SMM	7/22/2016	1		COMP	346	ND	ND	37	ND	ND	ND	ND	33.3	16200	12200	n/a	n/a
SMM	7/22/2010	2		1	375	ND	ND	ND	ND	ND	ND	ND	53.5	16000	6/20	n/a	n/a
SMM	7/29/2016	2		2	254	ND	ND	ND	ND	ND	ND	ND	29.4	22400	8690	n/a	n/a
SMM	7/29/2010	2	1	2	1040	ND	ND	ND	26.3	ND	ND	ND	38.4 ND	22400	19/00	n/a	n/a
SIVILVI	7/20/2016	2		3	251	ND	ND	ND	101	ND	ND	ND	ND	19500	16400	n/a	n/a
SIVIIVI	7/29/2016	2	L.	4	351	ND	ND	ND	101	ND	ND	ND	ND	18400	76400	11/d	11/d
SIVIIVI	7/29/2016	2	L.	5	405	ND	ND	ND	ND	ND	ND	ND	26.4	18400	7040	11/d	11/d
SIVIIVI	7/29/2016	2	L.	0	527	ND	ND	ND	ND 100	ND	ND	ND	30.4	17000	9150	11/d	11/d
SIVIIVI	7/29/2016	2	L .	/	602	ND	ND	ND	109	ND	ND	27.1	40.9	17200	7450	n/a	n/a
SIVIIVI	7/29/2016	2	L .	8	414	ND	ND	ND	ND	ND	ND	ND	35.6	12000	9350	n/a	n/a
SIVIIVI	//29/2016	2	L .	COMP	456	ND	ND	ND	ND	ND	ND	ND	37.3	16900	9740	n/a	n/a
SIVIIVI	8/3/2016	3	L	1	458	ND	ND	ND	ND	ND	ND	ND	ND	17600	16300	n/a	n/a
SMM	8/3/2016	3	L	2	231	ND	ND	ND	ND	ND	ND	ND	ND	18700	8880	n/a	n/a
SMM	8/3/2016	3	L	3	716	ND	ND	ND	ND	ND	ND	ND	ND	15500	17700	n/a	n/a
SMM	8/3/2016	3	L	4	1830	ND	ND	ND	ND	ND	ND	ND	ND	10700	9370	n/a	n/a
SMM	8/3/2016	3	L	5	453	ND	ND	ND	ND	ND	ND	ND	ND	11500	18200	n/a	n/a
SMM	8/3/2016	3	L	6	484	ND	ND	60.8	ND	ND	ND	ND	46.7	11300	10300	n/a	n/a
SMM	8/3/2016	3	L	7	206	ND	ND	ND	ND	ND	ND	ND	37.1	15500	10300	n/a	n/a
SMM	8/3/2016	3	L	8	1060	ND	ND	ND	ND	ND	ND	ND	ND	14800	11800	n/a	n/a
SMM	8/3/2016	3	L	COMP	355	ND	ND	ND	ND	ND	ND	ND	27.3	10600	17100	n/a	n/a
SSP	7/18/2016	1	Н	1	178	ND	ND	ND	ND	ND	ND	ND	43.2	8820	6000	ND	ND
SSP	7/18/2016	1	Н	2	621	ND	ND	ND	ND	ND	ND	ND	46.8	6230	6540	ND	ND
SSP	7/18/2016	1	Н	3	163	ND	ND	ND	ND	ND	ND	25.3	45.7	7850	6330	ND	ND
SSP	7/18/2016	1	Н	4	130	ND	ND	ND	ND	ND	ND	ND	48.8	10600	6390	ND	ND
SSP	7/18/2016	1	Н	5	276	ND	ND	ND	ND	ND	ND	ND	54.7	12000	6700	ND	ND
SSP	7/18/2016	1	Н	6	206	ND	ND	ND	ND	ND	ND	ND	48.7	6300	6110	ND	ND
SSP	7/18/2016	1	Н	7	144	ND	ND	ND	70.3	ND	ND	ND	35	9980	6480	ND	ND
SSP	7/18/2016	1	Н	8	607	ND	ND	ND	ND	ND	ND	ND	40.4	9260	5720	ND	ND
SSP	7/18/2016	1	Н	COMP	118	ND	ND	ND	ND	ND	ND	ND	47.6	7740	7320	ND	ND
SSP	7/25/2016	2	Н	1	176	ND	ND	ND	ND	ND	ND	ND	ND	12300	6020	ND	ND
SSP	7/25/2016	2	н	2	113	ND	ND	ND	ND	ND	ND	ND	ND	12200	11400	ND	ND
SSP	7/25/2016	2	Н	3	364	ND	ND	ND	ND	ND	ND	ND	ND	14200	10200	ND	ND
SSP	7/25/2016	2	Н	4	305	ND	ND	ND	ND	ND	ND	ND	ND	11100	10300	ND	ND
SSP	7/25/2016	2	Н	5	188	ND	ND	ND	ND	ND	ND	ND	ND	10700	8870	ND	ND
SSP	7/25/2016	2	Н	6	339	ND	ND	ND	ND	ND	ND	ND	33.7	10400	5520	ND	ND
SSP	7/25/2016	2	Н	7	235	ND	ND	ND	ND	ND	ND	ND	ND	8200	13700	ND	ND
SSP	7/25/2016	2	Н	8	316	ND	ND	ND	ND	ND	ND	ND	ND	11600	5560	ND	ND
SSP	7/25/2016	2	Н	COMP	229	ND	ND	ND	ND	ND	ND	ND	ND	9080	8110	ND	ND
SSP	8/1/2016	3	Н	1	290	ND	ND	ND	ND	ND	ND	ND	40.3	16900	15800	n/a	n/a
SSP	8/1/2016	3	Н	2	173	ND	ND	ND	ND	ND	ND	ND	70.5	17700	7280	n/a	n/a
SSP	8/1/2016	3	н	3	250	ND	ND	ND	ND	ND	ND	ND	41.7	18900	10900	n/a	n/a
SSP	8/1/2016	3	Н	4	132	ND	ND	ND	ND	ND	ND	ND	27.8	18800	7380	n/a	n/a
SSP	8/1/2016	3	н	5	270	ND	ND	ND	ND	ND	ND	ND	47.8	21500	11600	n/a	n/a
SSP	8/1/2016	3	н	6	239	ND	ND	ND	ND	ND	ND	ND	39.5	18000	11400	n/a	n/a
SSP	8/1/2016	3	н	7	255	ND	ND	ND	ND	ND	ND	ND	52	8680	14200	n/a	n/a
SSP	8/1/2016	3	н	8	143	ND	ND	ND	ND	ND	ND	ND	67.3	14200	7850	n/a	n/a
SSP	8/1/2016	3	н	COMP	270	ND	ND	ND	ND	ND	ND	ND	43.5	24000	7600	n/a	n/a
	-, -, =010															, 🛥	

Page 8 of 10

															тс	TAL METALS	(mg/kg)										
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated
Facility	Sample Date	Day	Dosage	Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel
SSP	7/19/2016	1	М	1	99.8	57.5	ND	ND	1030	635	ND	ND	9.01	ND	93.6	83.5	27.6	43.8	27200	19100	420	323	n/a	n/a	14.3	11.1	101
SSP	7/19/2016	1	М	2	197	61.8	ND	ND	690	717	ND	ND	ND	8.12	125	139	11.6	100	13100	9190	286	762	n/a	n/a	36.3	19.3	123
SSP	7/19/2016	1	М	3	105	46.7	ND	ND	912	761	ND	ND	14.8	ND	123	222	22.6	10.5	28100	8100	736	225	n/a	n/a	38	13.9	147
SSP	7/19/2016	1	М	4	102	169	ND	ND	951	623	ND	ND	8.53	8.41	447	300	20.7	21.8	29200	10700	542	2070	n/a	n/a	50.7	20.4	305
SSP	7/19/2016	1	М	5	169	73.9	ND	ND	530	640	ND	ND	11	ND	145	122	13.8	10.8	14800	34300	617	289	n/a	n/a	18.6	11.9	127
SSP	7/19/2016	1	М	6	124	552	ND	ND	715	551	ND	ND	13.9	11.4	896	271	37.6	34.4	36200	9460	903	849	n/a	n/a	30.7	46.3	801
SSP	7/19/2016	1	М	7	319	92.2	ND	ND	735	203	ND	ND	10.9	18.6	149	388	53.2	16.3	42500	19200	554	427	n/a	n/a	19.3	31.2	354
SSP	7/19/2016	1	М	8	73.5	108	ND	ND	698	508	ND	ND	9.82	17.1	167	114	14.5	16.3	17700	9450	650	509	n/a	n/a	21.9	15.8	119
SSP	7/19/2016	1	М	COMP	241	112	9.43	ND	849	484	ND	ND	ND	67	439	94.8	19.4	12.2	21300	15200	459	402	n/a	n/a	17.6	13	122
SSP	7/26/2016	2	М	1	134	72.6	ND	ND	806	713	ND	ND	ND	ND	974	278	25.8	88.1	8610	1600	886	683	n/a	n/a	ND	ND	603
SSP	7/26/2016	2	М	2	163	118	ND	ND	1200	846	ND	ND	ND	ND	345	446	37	26.5	2750	5760	1110	663	n/a	n/a	ND	ND	258
SSP	7/26/2016	2	M	3	37	ND	97.8	ND	650	293	ND	ND	ND	ND	568	430	43.8	33.8	6300	2500	1600	1030	n/a	n/a	28.8	ND	535
SSP	7/26/2016	2	M	4	112	95.4	ND	ND	759	829	ND	ND	ND	ND	901	1010	56.1	34.8	8390	10700	1750	2630	n/a	n/a	29.8	ND	601
SSP	7/26/2016	2	M	5	43.3	89.8	ND	ND	698	189	ND	ND	ND	ND	300	1680	41.8	41 3	9380	4700	1240	873	n/a	n/a	ND	ND	385
SSP	7/26/2016	2	M	6	38	51.1	ND	ND	916	376	ND	ND	ND	ND	403	360	73.3	145	4350	5280	1440	974	n/a	n/a	ND	ND	375
SSP	7/26/2016	2	M	7	31.8	48.3	ND	ND	378	218	ND	ND	ND	ND	403	593	54	36.8	8300	7680	1690	1120	n/a	n/a	33	29.3	440
SSD	7/26/2016	2	M	,	99.4	62.8	ND	ND	365	/28	ND	ND	ND	ND	1000	/29	16.3	27.5	8910	15400	1210	675	n/a	n/a	47.1	25:5 ND	578
SSD	7/26/2016	2	M	COMP	01.0	ND	ND	ND	904	228	ND	ND	ND	ND	618	438	40.3	27.5	5630	6730	1060	1020	n/a	n/a	47.1	ND	3/1
SSD	8/4/2016	2	M	1	91.9 ND	02.2	ND	ND	304	199	ND	ND	ND	ND	1220	410	37.3 ND	50.5	69400	7590	1360	1200	n/a	n/a	ND	ND	91/
SCD	8/4/2010	2	IVI NA	2	72.2	40.0	ND	ND	040	400	ND	ND	ND	ND	200	194	ND	33.3	11500	0100	1030	020	n/a	n/a	26	ND	102
53F	8/4/2010	2	IVI M	2	75.5	43.5	ND	ND	540	200	ND	ND	ND	ND	290	104	20.7	32.0	E2000	4700	1930	1170	11/a	11/a	30	ND	192
55P	8/4/2016	2	IVI	3	269	157	ND	ND	044	299	ND	ND	ND	ND	1100	165	59.7	32.9	55900	4790	090	752	11/d	11/d	ND	ND	502
55P	8/4/2016	2	IVI	4	109	44.8	ND	ND	244	217	ND	ND	ND	ND	220	105	57.2	ND	8740	16800	902	1000	11/d	11/d	35.0	ND	222
SSP	8/4/2016	3	IVI	5	224	53.0	ND	ND	414	332	ND	ND	ND	ND	329	349	ND	ND	28400	16800	788	1060	n/a	n/a	25.9	ND	232
SSP	8/4/2016	3	IVI	6	184	118	ND	ND	636	200	ND	ND	ND	ND	1/3	197	65.9	ND	23700	1690	526	637	n/a	n/a	ND	ND	218
SSP	8/4/2016	3	IVI	/	116	114	ND	ND	594	190	ND	ND	ND	ND	225	207	30.7	41.8	11500	6610	822	1490	n/a	n/a	ND	ND	183
SSP	8/4/2016	3	M	8	167	305	ND	ND	757	206	ND	ND	ND	ND	498	515	ND	26.5	48300	3450	921	682	n/a	n/a	ND	ND	346
SSP	8/4/2016	3	М	COMP	155	63.8	ND	ND	587	241	ND	ND	ND	ND	247	613	30.1	25	8050	14000	1230	725	n/a	n/a	ND	ND	214
SSP	7/20/2016	1	L	1	93.3	78.5	ND	ND	486	494	ND	ND	12.8	9.05	430	131	26.7	17.8	24600	15200	689	696	n/a	n/a	30	17.4	291
SSP	7/20/2016	1	L	2	207	244	ND	ND	660	377	ND	ND	12.6	8.99	152	193	34.1	16.3	24700	11100	697	462	n/a	n/a	30.8	18.1	150
SSP	7/20/2016	1	L	3	219	277	ND	ND	572	498	ND	ND	16.5	ND	161	129	27.1	20.6	22800	6020	689	6520	n/a	n/a	27.5	18.4	156
SSP	7/20/2016	1	L	4	153	80	ND	ND	696	523	ND	ND	16.2	9.38	330	213	33.9	18.9	36900	5660	835	639	n/a	n/a	28.8	24.3	322
SSP	7/20/2016	1	L	5	297	159	ND	ND	462	596	ND	ND	9.4	8.68	147	176	14.4	14.3	25100	10500	606	655	n/a	n/a	23.1	34.2	121
SSP	7/20/2016	1	L	6	183	204	ND	ND	577	599	ND	ND	ND	ND	158	149	15.2	12.6	22400	6760	505	408	n/a	n/a	25.6	17.3	109
SSP	7/20/2016	1	L	7	159	65.6	ND	ND	511	488	ND	ND	ND	9.69	257	195	21.7	20.9	33900	5770	724	688	n/a	n/a	22.5	75.4	130
SSP	7/20/2016	1	L	8	64.1	499	ND	ND	1650	653	ND	ND	9.69	10.7	217	327	27.8	18	12700	12000	535	801	n/a	n/a	36.9	29.4	119
SSP	7/20/2016	1	L	COMP	282	143	ND	ND	408	451	ND	ND	8.87	9.78	1763	183	31	15.6	24200	9570	516	916	n/a	n/a	54.3	27.6	926
SSP	7/27/2016	2	L	1	42	49.3	ND	ND	9.6	358	ND	ND	ND	ND	813	526	41.3	41	7080	6260	2600	876	n/a	n/a	40	28.3	533
SSP	7/27/2016	2	L	2	37.8	27	ND	ND	458	300	ND	ND	ND	ND	490	548	703	36.3	4630	1240	1490	2220	n/a	n/a	ND	ND	458
SSP	7/27/2016	2	L	3	65.8	36.8	ND	ND	498	303	ND	ND	ND	ND	418	506	79.8	44.3	7180	3280	1720	1450	n/a	n/a	ND	ND	368
SSP	7/27/2016	2	L	4	53.3	37.8	ND	ND	608	265	ND	ND	ND	ND	625	275	51.8	34.3	3400	3150	2980	1360	n/a	n/a	ND	ND	485
SSP	7/27/2016	2	L	5	44.1	ND	ND	ND	486	273	ND	ND	ND	ND	639	463	48.6	37.5	7610	3100	1830	1010	n/a	n/a	ND	ND	581
SSP	7/27/2016	2	L	6	85.3	34.3	ND	ND	543	368	ND	ND	ND	ND	878	351	48.3	28.5	10100	32100	1850	1450	n/a	n/a	46.3	ND	653
SSP	7/27/2016	2	L	7	28.5	87.2	ND	ND	538	298	ND	ND	ND	46.6	798	504	58.3	38.8	2250	3060	4580	1750	n/a	n/a	26.3	ND	606
SSP	7/27/2016	2	L	8	ND	129	ND	ND	328	398	ND	ND	ND	ND	828	383	60.3	48.1	6760	7290	1780	1530	n/a	n/a	30.8	ND	541
SSP	7/27/2016	2	L	COMP	91.8	54.8	ND	ND	540	407	ND	ND	ND	ND	630	708	44.5	228	10500	4420	1460	1350	n/a	n/a	ND	58	473
SSP	8/5/2016	3	L	1	201	44	ND	ND	296	162	ND	ND	ND	ND	311	174	31.6	ND	32600	75500	1390	937	n/a	n/a	ND	ND	1510
SSP	8/5/2016	3	L	2	96.5	108	ND	ND	225	186	ND	ND	162	ND	418	784	41.8	109	25000	8890	1240	933	n/a	n/a	ND	31.7	393
SSP	8/5/2016	3	L	3	135	57.2	ND	ND	448	198	ND	ND	ND	ND	270	221	26	31.1	16500	11400	1020	1050	n/a	n/a	ND	ND	242
SSP	8/5/2016	3	L	4	212	122	ND	ND	336	123	24.3	ND	ND	ND	239	493	30.8	26.8	34800	10800	1150	1890	n/a	n/a	ND	ND	263
SSP	8/5/2016	3	L	5	ND	43.8	ND	ND	268	360	ND	ND	ND	ND	2260	268	ND	25	37500	21800	716	873	n/a	n/a	ND	ND	363
SSP	8/5/2016	3	L	6	88.1	59.2	ND	ND	356	201	ND	ND	ND	ND	162	264	ND	25.1	21200	13900	906	1000	n/a	n/a	ND	ND	197
SSP	8/5/2016	3	L	7	79.9	77.3	ND	ND	368	100	ND	ND	ND	ND	203	1350	ND	54.4	73900	2340	652	2400	n/a	n/a	ND	ND	239
SSP	8/5/2016	3	L	8	348	111	ND	ND	247	151	ND	ND	ND	ND	440	2490	37.8	40.9	27300	13900	2360	1010	n/a	n/a	ND	56.1	345
SSP	8/5/2016	3	L	COMP	158	101	ND	ND	335	132	ND	ND	ND	ND	458	1620	28.3	33.4	22300	9910	1050	839	n/a	n/a	ND	27.2	298
	-, -,	-	-																				,-	,-			

Notes and abbreviations

PCB = polychlorinated biphenyl COMP = composite sample ND = not detected n/a = not analyzed Concentrations are presented in milligrams per kilogram (mg/kg) Detected concentrations are **bolded**

									ΤΟΤΑ	L METALS (m	g/kg)					TOTAL PC	Bs (mg/kg)
					Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Nickel	Selenium	Selenium	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Total PCBs	Total PCBs
SSP	7/19/2016	1	М	1	72.5	ND	ND	ND	13.5	ND	ND	ND	50.8	6550	3420	n/a	n/a
SSP	7/19/2016	1	М	2	101	ND	ND	ND	ND	ND	ND	10.1	53.6	5500	5410	n/a	n/a
SSP	7/19/2016	1	М	3	124	ND	ND	ND	ND	ND	ND	12	16.8	11000	3470	n/a	n/a
SSP	7/19/2016	1	М	4	185	ND	ND	ND	ND	ND	ND	10.6	30.1	7710	6290	n/a	n/a
SSP	7/19/2016	1	М	5	153	ND	ND	8.09	ND	ND	ND	7.98	18.2	6540	4930	n/a	n/a
SSP	7/19/2016	1	М	6	269	ND	ND	ND	11	ND	ND	17	31.8	11000	7930	n/a	n/a
SSP	7/19/2016	1	M	7	310	ND	ND	ND	ND	ND	ND	8.74	36.9	8070	6990	n/a	n/a
SSP	7/19/2016	1	M	8	90.8	ND	ND	17.1	ND	ND	ND	8.27	40.3	7090	5290	n/a	n/a
SSP	7/19/2016	1	M	COMP	86.4	ND	19.4	ND	ND	ND	ND	13.7	34.6	6080	4870	n/a	n/a
SSP	7/26/2016	2	M	1	175	ND	ND	ND	ND	ND	ND	ND	ND	11000	10600	n/a	n/a
SSP	7/26/2016	2	M	2	247	ND	ND	ND	ND	ND	ND	ND	ND	16400	17600	n/a	n/a
SSP	7/26/2016	2	M	3	345	ND	ND	ND	ND	ND	ND	ND	51.1	21400	14800	n/a	n/a
SSD	7/26/2016	2	M	3	545	ND	ND	ND	ND	ND	ND	ND	ND	23800	15000	n/a	n/a
SCD	7/20/2010	2	M	4	618	ND	ND	ND	ND	ND	ND	ND	12.2	20200	12500	n/a	n/a
	7/26/2010	2	N/	5	426	ND	ND	ND	ND	ND	ND	ND	42.5	20200	12300	n/a	n/a
55F	7/20/2010	2	IVI N4	0	420	ND	ND	ND	ND	ND	ND	ND	34	20300	17500	11/a	11/a
55P	7/20/2010	2		/	400	ND	ND	ND	ND	ND	ND	ND	39.8	27800	0790	11/d	11/d
55P	7/20/2010	2		0 COM/D	208	ND	ND	ND	ND	ND	ND	ND	32.3	17000	9780	11/d	11/d
55P	//20/2016	2			258	ND	ND	ND	ND	ND	ND	ND	40.8	10000	14/00	11/d	11/d
SSP	8/4/2016	2	IVI	1	351	ND	ND	ND	ND	ND	ND	ND	ND	19000	11900	11/a	11/d
SSP	8/4/2016	3	IVI	2	159	ND	ND	ND	ND	ND	ND	ND	41.1	9600	11200	n/a	n/a
SSP	8/4/2016	3	IVI	3	354	ND	ND	ND	ND	ND	ND	ND	ND	8330	15900	n/a	n/a
SSP	8/4/2016	3	IVI	4	142	ND	ND	ND	ND	ND	ND	ND	3/	18600	10100	n/a	n/a
SSP	8/4/2016	3	IVI	5	249	ND	ND	ND	ND	ND	ND	ND	ND	10700	10900	n/a	n/a
SSP	8/4/2016	3	M	6	162	ND	ND	ND	ND	ND	ND	ND	56.9	10500	10800	n/a	n/a
SSP	8/4/2016	3	M	7	285	ND	ND	ND	ND	ND	ND	ND	48.6	11800	18300	n/a	n/a
SSP	8/4/2016	3	M	8	315	ND	ND	ND	ND	ND	ND	ND	42	9580	8150	n/a	n/a
SSP	8/4/2016	3	M	COMP	360	ND	ND	ND	31.3	ND	ND	ND	26.5	17300	10500	n/a	n/a
SSP	7/20/2016	1	L	1	165	ND	ND	ND	8.16	ND	ND	16.6	25.7	10400	9120	n/a	n/a
SSP	7/20/2016	1	L	2	141	ND	ND	14.1	ND	ND	ND	15.2	19.2	10200	7360	n/a	n/a
SSP	7/20/2016	1	L	3	540	ND	ND	ND	ND	ND	ND	12.8	14.6	12700	7630	n/a	n/a
SSP	7/20/2016	1	L	4	167	ND	ND	ND	ND	ND	ND	13.8	27.3	13600	9670	n/a	n/a
SSP	7/20/2016	1	L	5	146	ND	ND	ND	ND	ND	ND	10.3	18.8	8470	8100	n/a	n/a
SSP	7/20/2016	1	L	6	96.9	ND	ND	66.2	ND	ND	ND	8.61	19.8	8170	6800	n/a	n/a
SSP	7/20/2016	1	L	7	214	ND	ND	ND	ND	ND	ND	11.5	49.3	7720	8540	n/a	n/a
SSP	7/20/2016	1	L	8	161	ND	ND	ND	ND	ND	ND	17.8	16.6	8630	9870	n/a	n/a
SSP	7/20/2016	1	L	COMP	121	ND	ND	ND	ND	ND	ND	12.4	25.1	7410	7350	n/a	n/a
SSP	7/27/2016	2	L	1	395	ND	ND	ND	ND	ND	ND	ND	ND	18700	12400	n/a	n/a
SSP	7/27/2016	2	L	2	395	ND	ND	ND	ND	ND	ND	ND	28	22200	17800	n/a	n/a
SSP	7/27/2016	2	L	3	370	ND	ND	ND	ND	ND	ND	ND	ND	28800	19500	n/a	n/a
SSP	7/27/2016	2	L	4	253	ND	ND	ND	ND	ND	ND	ND	ND	25800	20100	n/a	n/a
SSP	7/27/2016	2	L	5	388	ND	ND	ND	ND	ND	ND	ND	27.5	24400	16900	n/a	n/a
SSP	7/27/2016	2	L	6	232	ND	ND	ND	ND	ND	ND	ND	ND	22400	11600	n/a	n/a
SSP	7/27/2016	2	L	7	388	ND	ND	ND	ND	ND	ND	ND	25.1	26800	18700	n/a	n/a
SSP	7/27/2016	2	L	8	376	ND	ND	ND	ND	ND	ND	ND	ND	22000	19800	n/a	n/a
SSP	7/27/2016	2	L	COMP	661	ND	ND	ND	ND	ND	ND	ND	ND	23000	21800	n/a	n/a
SSP	8/5/2016	3	L	1	203	ND	ND	ND	ND	ND	ND	ND	ND	19200	15500	n/a	n/a
SSP	8/5/2016	3	L	2	457	ND	ND	ND	ND	ND	ND	ND	ND	23200	11400	n/a	n/a
SSP	8/5/2016	3	L	3	276	ND	ND	ND	ND	ND	ND	ND	ND	14900	23700	n/a	n/a
SSP	8/5/2016	3	L	4	280	ND	ND	ND	ND	ND	ND	ND	ND	16300	12500	n/a	n/a
SSP	8/5/2016	3	L	5	230	ND	ND	ND	35	ND	ND	ND	ND	24000	11100	n/a	n/a
SSP	8/5/2016	3	L	6	253	ND	ND	ND	ND	ND	ND	ND	ND	11200	14500	n/a	n/a
SSP	8/5/2016	3	L	7	838	ND	ND	ND	45.6	ND	ND	ND	ND	9200	21100	n/a	n/a
SSP	8/5/2016	3	L	8	1500	ND	ND	ND	ND	ND	ND	ND	ND	17100	11000	n/a	n/a
SSP	8/5/2016	3	L	COMP	804	ND	ND	ND	ND	ND	ND	ND	ND	16000	12100	n/a	n/a

Notes and abbreviations

PCB = polychlorinated biphenyl COMP = composite sample ND = not detected n/a = not analyzed Concentrations are presented in milligrams per kilogram (mg/kg) Detected concentrations are **bolded**

Page 10 of 10

																	v	VET (mg/L)							-					
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel	Nickel	Selenium	Selenium
SARA	7/7/2016	1	Н	1	0.99	ND	ND	0.534	5.23	ND	ND	ND	0.988	ND	1.99	0.96	1.43	ND	0.714	ND	41.3	ND	ND	ND	ND	ND	3.89	0.534	ND	ND
SARA	7/7/2016	1	Н	2	0.844	ND	ND	0.554	4.98	ND	ND	ND	1.32	ND	1.94	1.05	1.48	0.428	0.762	ND	37.1	1.13	ND	ND	ND	ND	4.82	1.19	ND	ND
SARA	7/7/2016	1	н	3	0.83	ND	ND	0.648	5.33	ND	ND	ND	1.29	ND	2.06	1.55	1.97	ND	1.41	ND	38.7	0.926	ND	ND	0.42	ND	4.81	0.686	ND	ND
SARA SARA	7/7/2016	1	н	4	0.756	ND	ND	0.592 ND	5.92	12	ND	ND	1.5		2.8	1.01	2.88	0 746	4.38	0714	44.3	4.81	ND	2 41	0.44	ND	4.95	1.96	ND	ND
SARA	7/7/2016	1	н	6	0.862	ND	ND	0.478	5.24	ND	ND	ND	1.65	0.426	4	1.22	2.08	0.5	6.01	3.57	62.6	6.55	ND	ND	0.536	ND	6.44	1.46	ND	ND
SARA	7/7/2016	1	н	7	0.866	ND	ND	0.688	5.2	ND	ND	ND	1.45	ND	2.15	0.976	2.09	ND	2.93	0.444	57.5	1.38	ND	ND	0.418	ND	4.88	0.97	ND	ND
SARA	7/7/2016	1	Н	8	0.458	ND	ND	0.602	4.12	ND	ND	ND	1.11	ND	2.2	1.28	1.36	ND	1.86	ND	36.3	1.13	ND	ND	0.428	ND	3.33	0.956	ND	ND
SARA	7/7/2016	1	Н	COMP	0.808	ND	ND	0.544	4.92	ND	ND	ND	1.34	ND	1.66	2.19	1.86	ND	2.29	ND	51.3	2.08	ND	ND	0.452	ND	4.14	1.05	ND	ND
SARA	7/18/2016	2	Н	1	1.8	0.624	0.746	0.936	5.34	ND	ND	ND	1.91	0.53	2.88	1.37	1.91	0.488	3.8	1.6	78.1	3.73	ND	ND	0.706	0.456	6.12	1.47	1.01	ND
SARA	7/18/2016	2	Н	2	1.69	0.548	0.696	0.97	5.42	ND	ND	ND	2.06	ND	2.35	0.908	1.76	ND	3.73	1.73	95.2	1.67	ND	ND	0.584	ND	5.23	0.734	ND	ND
SARA	7/18/2016	2	Н	3	1.81	1.01	0.694	0.466	5.52	ND	ND	ND	2.1	ND	2.25	0.426	1.85	ND	6.41	1.56	88	ND 0.74	ND	ND	0.582	ND	5.66	0.538	ND	ND
SARA SARA	7/18/2016	2	н	5	1.75	0.556	0.714	1 1	5 35	ND	ND	ND	2.03	ND	2.04	1.04	1.94	ND	2.11	1 74	100	2 39	ND	ND	0.576	ND	5.40	0.000	ND	ND
SARA	7/18/2016	2	н	6	1.8	ND	0.754	0.792	5.67	ND	ND	ND	2.28	ND	2.34	0.612	2.69	ND	6	1.3	105	0.48	ND	ND	0.684	ND	6.64	0.536	ND	ND
SARA	7/18/2016	2	Н	7	1.84	ND	0.672	0.912	5.64	ND	ND	ND	2.07	ND	2.22	1.47	2.04	ND	3.2	1.25	106	1.19	ND	ND	0.64	ND	6.14	0.67	1.01	ND
SARA	7/18/2016	2	Н	8	2.03	ND	0.78	0.672	5.44	ND	ND	ND	2.13	ND	4.19	0.628	2.21	ND	4	2.92	117	ND	ND	ND	0.788	ND	6.41	0.484	1.04	ND
SARA	7/18/2016	2	Н	COMP	3.42	ND	0.722	0.532	5.51	ND	ND	ND	2.16	ND	2.26	0.622	3.44	ND	9.25	1.91	121	ND	ND	ND	0.686	ND	7.1	0.568	ND	ND
SARA	7/27/2016	3	Н	1	0.962	0.698	0.522	0.924	3.47	1.71	ND	ND	0.95	0.564	1.11	1.33	0.846	0.524	3.53	3.92	55.8	7.77	ND	ND	0.458	0.44	3.27	1.88	ND	ND
SARA	7/27/2016	3	Н	2	1.5	0.56	0.754	1.11	5.04	ND	ND	ND	1.57	ND	2.67	1.86	1.41	ND	3.42	1.76	72.1	3.14	ND	ND	0.92	0.636	4.97	1.4	ND	ND
SARA	7/27/2016	3	н	3	1.5	0.444	0.866	1.18	4.99	ND 11	ND	ND	1.2/	ND	2.01	1.88	1.27	ND 0.422	1.96	1.24	70.2	1.98	ND	ND	0.828	0.602	5.01	1.06	ND	ND
SARA	7/27/2010	3	н	5	1.73	0.858	0.550	1.22	3.69	2 35	ND	ND	0.916	ND	4.00	1.8	0.982	0.432	0.814	0.818 ND	48.8	5 16	ND	ND	0.50	0.004	3.49	1 78	ND	ND
SARA	7/27/2016	3	н	6	1.4	0.638	0.632	1.15	4.94	1.63	ND	ND	1.23	ND	9.9	1.61	1.39	0.628	1.69	0.684	50.6	4.88	ND	ND	0.608	0.456	4.64	2.08	ND	ND
SARA	7/27/2016	3	Н	7	1.39	0.628	0.556	1.07	4.1	ND	ND	ND	1.22	ND	2.48	1.42	1.86	ND	1.44	1.93	45.8	1.8	ND	ND	0.606	0.476	4.19	0.998	ND	ND
SARA	7/27/2016	3	Н	8	1.4	0.56	0.578	1.2	4.19	ND	ND	ND	1.19	0.444	1.52	3.27	1.36	ND	1.31	4.23	46	4.45	ND	ND	0.614	0.566	4.35	1.53	ND	ND
SARA	7/27/2016	3	Н	COMP	1.58	0.622	0.73	1.06	5.36	ND	ND	ND	1.61	0.402	2.28	4.73	1.69	ND	2.42	3.01	77.6	6.69	ND	ND	0.896	0.508	5.57	1.58	ND	ND
SARA	7/6/2016	1	М	1	0.678	0.638	ND	0.528	4.7	1.46	ND	ND	0.754	ND	1.94	2.6	1.26	0.534	ND	ND	24.6	3.97	ND	ND	ND	ND	3.58	1.74	ND	ND
SARA	7/6/2016	1	M	2	0.756	ND	ND	0.578	4.09	ND	ND	ND	0.972	ND	2.36	1.07	1.18	ND	1.29	ND 0.520	36.4	2.29	ND	ND	0.418	ND	3.79	1.35	ND	ND
SARA	7/6/2016	1	M	3	0.842	ND	ND	0.640	4.29		ND		0.89		2 29	1.24	1.10	ND	1.75	0.530 ND	46.3 39.4	2.28			0.484	ND	3.59	0.738		
SARA	7/6/2016	1	M	5	0.664	ND	ND	0.49	4.74	ND	ND	ND	1.23	ND	2.56	1.27	1.61	0.412	1.57	ND	48.6	2.21	ND	ND	0.492	ND	4.33	1.56	ND	ND
SARA	7/6/2016	1	M	6	0.984	ND	ND	0.434	4.45	1.58	ND	ND	0.828	ND	4.16	1.23	1.23	ND	0.506	ND	33.5	2.26	ND	ND	ND	0.42	4.01	1.25	ND	ND
SARA	7/6/2016	1	М	7	1.36	ND	ND	0.554	5.82	ND	ND	ND	1.31	ND	1.98	1.37	1.3	ND	ND	ND	65.7	1.79	ND	ND	0.49	ND	4.56	1.15	ND	ND
SARA	7/6/2016	1	М	8	0.766	ND	ND	0.602	4.34	ND	ND	ND	1.11	ND	1.54	2.12	1.1	ND	0.928	ND	44.2	2.07	5.52	2.03	ND	ND	3.77	1.07	ND	ND
SARA	7/6/2016	1	М	COMP	1.06	0.522	ND	0.582	4.57	1.01	ND	ND	1	ND	2.07	2.26	1.26	0.44	1.2	ND	40.1	4.31	ND	ND	0.4	ND	3.3	1.66	ND	ND
SARA	7/19/2016	2	M	1	0.722	0.434	ND	0.44	4.03	0.702	ND	ND	0.936	ND	1.63	1.7	1.4	0.402	ND	ND	53.1	2.74	n/a	n/a	0.45	ND	3.37	1.2	ND	ND
SARA	7/19/2016	2	M	2	0.902	0.682	ND	ND	4.86	2.24	ND	ND	1.28	0.538	2.42	2.1	1.48	1.02	3./	ND	69.1	5.8	n/a	n/a	0.668	0.616	3.9	3.13	ND	ND
SARA SARA	7/19/2016	2	M	5 4	0.628	0.824	ND	ND	4.69	1 19	ND	ND	1.05	0.426	2.79	1.45	1.12	0.490	2.98	3 11	72.6	9.26	n/a	n/a	0.548	0.474	3.88 4.26	2 29	ND	ND
SARA	7/19/2016	2	M	5	2.04	0.44	ND	0.414	4.25	1.798	ND	ND	1.01	ND	1.74	1.32	1.27	0.478	2.22	ND	57.1	2.79	n/a	n/a	0.544	0.44	3.42	1.55	ND	ND
SARA	7/19/2016	2	М	6	0.912	0.664	ND	ND	4.86	1.84	ND	ND	1.14	0.478	9.52	4.35	2.46	1.05	6.24	0.772	55.5	6.78	n/a	n/a	0.486	0.482	3.78	2.61	ND	ND
SARA	7/19/2016	2	М	7	1	0.432	ND	0.468	6.57	0.716	ND	ND	1.12	ND	5.21	1.38	1.75	ND	2.76	3.3	52	2.88	n/a	n/a	0.444	ND	4.17	1.28	ND	ND
SARA	7/19/2016	2	М	8	0.756	0.53	ND	ND	4.78	1.75	ND	ND	0.72	ND	1.52	5.27	1.33	0.762	1.72	ND	82.9	4.64	n/a	n/a	0.444	0.424	3.11	2.14	ND	ND
SARA	7/19/2016	2	M	COMP	0.694	0.53	ND	ND	5.19	0.964	ND	ND	0.992	ND	2.04	1.6	1.69	0.544	1.21	ND	55.7	2.34	n/a	n/a	0.58	0.4	4.56	1.72	ND	ND
SARA	7/26/2016	3	M	1	0.986	ND	2.//	0.632	3.33	0.648	ND	ND	1.46	ND	3.38	1.//	1.32	ND	4	ND	66.1	2.65	n/a	n/a	0.616	ND	3.05	1	ND	ND
SARA	7/26/2016	3	M	2	0.830	0.55	7.87	0.652	4.30	0.928	ND		1.85	0.58	3.27	2.41	2.02	0.89	2 72	0 908	91.4	9.10	n/a	n/a	0.83	0.528	3.79	2 19		
SARA	7/26/2016	3	M	4	1.16	1.21	0.968	0.74	5.05	2.28	ND	ND	2.16	0.76	3.28	1.99	2.85	1.05	1.67	2.16	107	7.87	n/a	n/a	0.894	0.464	5.04	2.08	ND	ND
SARA	7/26/2016	3	М	5	1.38	0.83	3.69	1.01	4.56	0.844	ND	ND	1.75	ND	4.47	2.02	1.85	0.582	3.92	ND	81	5.21	n/a	n/a	0.748	0.488	4.11	1.86	ND	ND
SARA	7/26/2016	3	Μ	6	1.04	1.07	1.18	1.62	4.49	0.942	ND	ND	1.43	0.482	2.7	4.47	2.03	0.632	3.34	2.64	72.4	7.23	n/a	n/a	0.732	0.544	3.65	1.96	ND	ND
SARA	7/26/2016	3	М	7	1.18	1.03	1.09	0.854	4.75	1.66	ND	ND	1.9	0.476	3.09	2.08	3.15	0.844	1.94	ND	89.6	6.22	n/a	n/a	0.796	0.446	4.34	2.1	ND	ND
SARA	7/26/2016	3	М	8	0.912	1.22	1.3	1.15	4.85	1.59	ND	ND	1.49	0.484	3.06	2.65	2.01	1.23	1.25	0.518	61.7	8.35	n/a	n/a	0.79	0.554	4.07	2.39	ND	ND
SARA	7/26/2016	3	M	COMP	1.21	0.87	1.57	0.96	5.16	0.946	ND	ND	1.95	0.4	3.28	2.27	2.2	0.656	1.6	0.692	90.9	5.37	n/a	n/a	0.898	0.504	4.49	1.93	ND	ND
SAKA	7/22/2016		L	1	0.934	0.83			4.02	1./5			2.64	0.66	1.8	2.94	2.32	1.12	2.09	0.48	86.6	7.04	n/a n/a	n/a	0.69	0.594	3.05	2.52		
SARA	7/22/2016	1	L [3	1.32	1.02	ND	ND	4.50	1.63	ND	ND	2.02	1.02	2.00	2,08	2.30	1.22	6.57	0.308	81.6	8,73	n/a	n/a	0.002	0.818	4.79	2.94	ND	ND
SARA	7/22/2016	1	- L	4	1.03	1.13	ND	ND	4.55	2.43	ND	ND	1.52	0.432	2.99	1.67	1.58	0.958	4.91	ND	55.3	4.99	n/a	n/a	0.746	0.546	3.77	2.24	ND	ND
SARA	7/22/2016	1	L	5	1.01	0.542	ND	0.582	4.96	0.934	ND	ND	1.49	ND	1.7	1.45	1.79	ND	3.54	0.968	42.5	3.06	n/a	n/a	0.586	ND	3.54	0.958	ND	ND
SARA	7/22/2016	1	L	6	1.01	0.646	ND	ND	5.46	2.54	ND	ND	2.09	0.564	2.48	2.55	1.86	1.01	4.82	0.5	58.4	5.6	n/a	n/a	1.32	0.568	4.5	2.44	ND	ND
SARA	7/22/2016	1	L	7	1.02	0.608	ND	0.456	4.59	3.06	ND	ND	1.96	0.522	2.49	0.59	9.09	0.836	5	0.474	68.9	5.44	n/a	n/a	0.842	0.568	4.13	2.03	ND	ND
SARA	7/22/2016	1	L	8	1.36	0.916	ND	0.546	4.79	4.27	ND	ND	2.32	0.524	2.38	1.57	2.02	0.64	3.71	ND	73.3	9.47	n/a	n/a	0.95	0.574	4.12	1.94	ND	ND
SARA	7/22/2016	1	L	COMP	1.28	0.694	ND	0.444	5.07	1.49	ND	ND	1.89	0.462	3.07	5.11	2.1	0.796	5.7	0.432	65	5.44	n/a	n/a	0.794	0.62	4.3	2.24	ND	ND

								WET (mg/L)											TCLP	(mg/L)							
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Arsenic	Arsenic	Barium	Barium	Cadmium	Cadmium	Chromium	Chromium	Lead	Lead	Mercury	Mercury	Selenium	Selenium	Silver	Silver
SARA	7/7/2016	1	Н	1	ND	ND	ND	ND	ND	2.63	521	0.604	ND	ND	ND	ND	0.3	ND	ND	ND	2.01	ND	ND .	1.09	ND	ND	ND	ND
SARA	7/7/2016	1	Н	2	ND	ND	ND	ND	ND	2.42	476	220	ND	ND	ND	ND	0.45	ND	ND	ND	4.77	ND	ND	0.534	ND	ND	ND	ND
SARA	7/7/2016	1	н	3	ND	ND	ND	ND	ND	2.71	603	19.6	ND	ND	ND	ND	0.47	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND
SARA	7/7/2016	1	Н	4	ND	ND	ND	ND	ND	2.41	559	93.7	ND	ND	ND	ND	0.35	ND	ND	ND	1.87	ND	ND	ND	ND	ND	ND	ND
SARA	7/7/2016	1	н	5	ND	ND	ND	ND	ND	2.12	590	350	ND	ND	ND	ND	0.47	ND	ND	ND	1.17	ND	ND	ND	ND	ND	ND	ND
SARA	7/7/2016	1	н	6	ND	ND	ND	ND	ND	2.12	656	314	ND	ND	ND	ND	0.43	ND	ND	ND	1.63	ND	ND	ND	ND	ND	ND	ND
SARA	7/7/2016	1	Н	7	ND	ND	ND	ND	ND	2.5	758	170	ND	ND	ND	ND	0.34	ND	ND	ND	1.19	ND	0.43	ND	ND	ND	ND	ND
SARA	7/7/2016	1	Н	8	ND	ND	ND	ND	ND	2.48	456	128	ND	ND	ND	ND	0.38	ND	ND	ND	1.23	ND	ND	ND	ND	ND	ND	ND
SARA	7/7/2016	1	н	COMP	ND	ND	ND	ND	ND	2.43	533	227	ND	ND	ND	ND	0.49	ND	ND	ND	6.32	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	Н	1	ND	ND	ND	ND	0.43	2.46	766	330	ND	ND	ND	ND	0.392	ND	ND	ND	1.23	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	Н	2	ND	ND	ND	ND	ND	2.48	700	37.6	ND	ND	ND	ND	0.358	ND	ND	ND	1.29	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	Н	3	ND	ND	ND	ND	0.42	2.12	852	0.738	ND	ND	ND	ND	0.813	ND	ND	ND	5.29	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	н	4	ND	ND	ND	ND	ND	2.47	678	7.11	ND	ND	ND	ND	0.488	ND	ND	ND	7.05	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	Н	5	ND	ND	ND	ND	ND	2.86	725	52.6	ND	ND	ND	ND	0.368	ND	ND	ND	0.899	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	н	6	ND	ND	ND	ND	0.452	2.38	883	1.42	ND	ND	ND	ND	0.784	ND	ND	ND	11.7	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	Н	7	ND	ND	ND	ND	0.418	2.44	686	16.4	ND	ND	ND	ND	0.364	ND	ND	ND	0.89	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	Н	8	ND	ND	ND	ND	0.506	2.7	868	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARA	7/18/2016	2	н	COMP	ND	ND	ND	ND	0.41	3.01	833	0.514	ND	ND	ND	ND	0.398	ND	ND	ND	0.691	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	Н	1	ND	ND	ND	ND	ND	1.78	422	269	ND	ND	ND	ND	0.265	ND	ND	ND	2.12	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	Н	2	ND	ND	ND	ND	ND	2.76	888	329	ND	ND	ND	ND	0.334	ND	ND	ND	0.97	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	н	3	ND	ND	ND	ND	ND	2.79	795	192	ND	ND	ND	ND	0.331	ND	ND	ND	1.56	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	Н	4	ND	ND	ND	ND	ND	2.15	854	419	ND	ND	ND	ND	0.352	ND	ND	ND	1.67	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	н	5	ND	ND	ND	ND	ND	1.83	419	322	ND	ND	ND	ND	0.363	ND	ND	ND	1.54	0.254	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	Н	6	ND	ND	ND	ND	ND	2.22	552	324	ND	ND	ND	ND	0.301	ND	ND	ND	1.92	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	Н	7	ND	ND	ND	ND	ND	2.49	611	193	ND	ND	ND	ND	0.393	ND	ND	ND	1.06	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	н	8	ND	ND	ND	ND	ND	2.52	473	280	ND	ND	ND	ND	0.389	ND	ND	ND	0.859	ND	ND	ND	ND	ND	ND	ND
SARA	7/27/2016	3	Н	COMP	ND	ND	ND	ND	ND	2.26	855	329	ND	ND	ND	ND	0.412	ND	ND	ND	1.43	ND	ND	ND	ND	ND	ND	ND
SARA	7/6/2016	1	М	1	ND	ND	ND	ND	ND	2.02	688	482	ND	ND	ND	ND	0.25	ND	ND	ND	2.37	ND	ND	ND	ND	ND	ND	ND
SARA	7/6/2016	1	М	2	ND	ND	ND	ND	ND	2.14	594	288	ND	ND	ND	ND	0.37	ND	ND	ND	0.9	ND	ND	ND	ND	ND	ND	ND
SARA	7/6/2016	1	М	3	ND	ND	ND	ND	ND	2.59	521	274	ND	ND	ND	ND	0.44	ND	0.21	ND	6.4	ND	ND	ND	ND	ND	ND	ND
SARA	7/6/2016	1	М	4	ND	ND	ND	ND	ND	2.17	700	91.7	ND	ND	ND	ND	0.45	ND	0.23	ND	5.34	ND	ND	ND	ND	ND	ND	ND
SARA	7/6/2016	1	М	5	ND	ND	ND	ND	ND	2.24	803	415	ND	ND	ND	ND	0.52	ND	0.28	ND	5.04	ND	ND	ND	ND	ND	ND	ND
SARA	7/6/2016	1	М	6	ND	ND	ND	ND	ND	1.84	646	285	ND	ND	ND	ND	0.29	ND	ND	ND	2.04	ND	ND	0.442	ND	ND	ND	ND
SARA	7/6/2016	1	М	7	ND	ND	ND	ND	ND	2.19	806	308	ND	ND	ND	ND	0.59	ND	0.2	ND	9.14	ND	ND	ND	ND	ND	ND	ND
SARA	7/6/2016	1	М	8	ND	ND	ND	ND	ND	2.32	519	232	ND	ND	ND	ND	0.42	ND	ND	ND	4.3	ND	ND	0.574	ND	ND	ND	ND
SARA	7/6/2016	1	М	COMP	ND	ND	ND	ND	ND	2.11	561	334	ND	ND	ND	ND	0.35	ND	ND	ND	1.38	ND	ND	ND	ND	ND	ND	ND
SARA	7/19/2016	2	Μ	1	ND	ND	ND	ND	ND	2.24	450	248	ND	ND	0.981	0.945	0.673	0.286	0.224	ND	16.7	0.939	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	М	2	ND	ND	ND	ND	ND	1.65	597	679	ND	ND	0.57	0.61	0.353	0.331	ND	ND	1.49	1.16	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	М	3	ND	ND	ND	ND	ND	2.28	530	404	ND	ND	0.543	0.571	0.379	ND	ND	ND	1.44	0.336	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	М	4	ND	ND	ND	ND	ND	2.11	645	434	ND	ND	0.578	0.575	0.353	ND	ND	ND	2.24	0.469	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	М	5	ND	ND	ND	ND	ND	2.41	561	358	ND	ND	0.585	0.569	0.322	ND	ND	ND	1.91	0.219	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	М	6	ND	ND	ND	ND	ND	1.82	685	580	ND	ND	0.673	0.66	0.375	0.26	ND	ND	2.19	0.558	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	М	7	ND	ND	ND	ND	ND	2.55	802	331	ND	ND	0.844	0.604	0.465	ND	0.34	ND	7.05	ND	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	M	8	ND	ND	ND	ND	ND	1.78	534	531	ND	ND	0.866	0.695	0.345	ND	ND	ND	13.3	0.815	n/a	n/a	ND	ND	ND	ND
SARA	7/19/2016	2	М	COMP	ND	ND	ND	ND	ND	1.96	656	437	ND	ND	0.677	0.97	0.268	ND	ND	ND	3.58	0.387	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	М	1	ND	ND	ND	ND	ND	2.59	340	214	ND	ND	ND	ND	0.547	ND	ND	ND	2.27	ND	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	М	2	ND	ND	ND	ND	ND	2.55	504	215	ND	ND	ND	0.511	0.539	ND	ND	ND	2.24	ND	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	M	3	ND	ND	ND	ND	ND	1.99	708	447	ND	ND	ND	0.567	0.563	0.258	ND	ND	1.8	0.617	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	М	4	ND	ND	ND	ND	ND	1.49	803	419	ND	ND	ND	0.615	0.464	0.318	ND	ND	0.842	1.56	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	М	5	ND	ND	ND	ND	ND	2.5	637	383	ND	ND	ND	0.597	0.532	ND	ND	ND	0.701	0.456	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	М	6	ND	ND	ND	ND	ND	2.52	609	402	ND	ND	ND	0.525	0.454	ND	ND	ND	1.04	0.405	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	Μ	7	ND	ND	ND	ND	ND	2.13	764	437	ND	ND	ND	0.521	0.501	ND	ND	ND	1.06	0.337	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	Μ	8	ND	ND	ND	ND	ND	2.08	658	505	ND	ND	0.586	0.559	0.383	ND	ND	ND	1.09	0.395	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	3	Μ	COMP	ND	ND	ND	ND	ND	2.42	708	416	ND	ND	ND	ND	0.44	ND	ND	ND	2.01	0.208	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	1	ND	ND	ND	ND	ND	1.53	644	673	ND	ND	ND	ND	0.455	ND	ND	ND	1.46	ND	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	2	ND	ND	ND	ND	ND	1.62	836	461	ND	ND	ND	0.601	0.738	0.242	0.212	ND	6.41	0.571	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	3	ND	ND	ND	ND	ND	1.88	1020	763	ND	ND	ND	0.574	0.76	0.369	0.221	ND	7.74	0.928	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	4	ND	ND	ND	ND	ND	1.28	730	547	ND	ND	ND	0.697	0.399	0.214	ND	ND	1.15	1.6	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	5	ND	ND	ND	ND	ND	2.34	600	245	ND	ND	ND	ND	0.487	ND	ND	ND	1	ND	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	6	ND	ND	ND	ND	ND	1.45	1090	568	ND	ND	0.535	0.611	0.511	ND	ND	ND	1.27	0.664	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	7	ND	ND	ND	ND	ND	2.06	798	517	ND	ND	ND	0.589	0.504	ND	ND	ND	1.02	0.308	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	8	ND	ND	ND	ND	ND	1.98	844	454	ND	ND	ND	0.566	0.757	0.256	ND	ND	1.86	1.81	n/a	n/a	ND	ND	ND	ND
SARA	7/22/2016	1	L	COMP	ND	ND	ND	ND	ND	1.98	845	572	ND	ND	ND	0.615	0.458	ND	ND	ND	0.924	0.431	n/a	n/a	ND	ND	ND	ND

						-	-		-	1	-	-					V	VET (mg/L)									-			
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel	Nickel	Selenium	Selenium
SARA	7/26/2016	2	L	1	1.19	0.826	ND	ND	4.66	2	ND	ND	0.812	ND	1.72	1.21	1.16	0.582	0.716	ND	68.2	3.88	n/a	n/a	0.554	ND	4.52	1.74	ND	ND
SARA	7/26/2016	2	L	2	0.854	0.9	ND	ND	2.15	3.72	ND	ND	0.498	0.753	1.92	1.63	0.974	0.988	ND	ND	5.56	65.8	n/a	n/a	0.558	0.524	2.55	3.98	ND	ND
SARA	7/26/2016	2		3	0.792	0.526	ND	ND 0.520	4.18	2.56	ND	ND	0.84	ND	1.26	3.21	0.976	0.642	0.666	ND	39.6	5.62	n/a	n/a	ND 0.722	ND	3.06	1.77	ND	ND
SARA	7/26/2016	2		4	1.91	0.792	ND	0.528 ND	5.24	2 3 69	ND		1.23	0.418 ND	4.22	2 55	1.27	0.672		ND	51.9	0.85	n/a n/a	n/a	0.732	0.412	3.01	2.01		
SARA	7/26/2016	2	1	6	0.946	0.562	ND	0.434	4.42	1.73	ND	ND	0.884	ND	1.46	3.82	0.842	0.516	1.04	ND	41.9	5.76	n/a	n/a	ND	ND	3.84	2.17	ND	ND
SARA	7/26/2016	2	L	7	0.897	0.462	ND	ND	3.63	2.24	ND	ND	0.792	0.432	1.40	1.41	0.767	0.578	ND	ND	49.9	4.9	n/a	n/a	0.503	0.45	3.31	1.87	ND	ND
SARA	7/26/2016	2	L	8	1.15	0.447	ND	0.607	7.18	0.635	ND	ND	1.18	ND	1.98	1.26	1.53	ND	1.19	ND	92.3	3.23	n/a	n/a	0.708	0.47	5.51	1.2	ND	ND
SARA	7/26/2016	2	L	COMP	0.794	0.69	ND	0.424	4.14	1.69	ND	ND	0.856	0.428	1.47	1.88	1.01	0.658	ND	0.752	56.2	6.95	n/a	n/a	0.518	ND	3.73	1.84	ND	ND
SARA	7/25/2016	3	L	1	1	1.04	ND	ND	3.54	3.2	ND	ND	0.778	0.842	46	1.96	2.16	1.05	0.894	ND	38.5	16.3	n/a	n/a	0.47	0.532	3.82	3.43	ND	ND
SARA	7/25/2016	3	L	2	1.16	0.84	ND	0.454	4.85	1.12	ND	ND	1.42	ND	3.17	10.3	1.12	0.462	0.658	0.87	35.3	5.61	n/a	n/a	0.576	0.446	4.2	1.66	ND	ND
SARA	7/25/2016	3	L	3	17.1	2.23	ND	0.456	4.53	2.29	ND	ND	1.46	0.68	2.2	2.15	1.1	0.694	0.87	ND	70.2	7.65	n/a	n/a	0.618	0.408	4.46	2.64	ND	ND
SARA	7/25/2016	3	L	4	1.2	1.03	ND	ND	4.71	4.04	ND	ND	1.45	0.826	4.53	4.89	1.49	0.886	1.1	0.458	54.8	43.3	n/a	n/a	0.666	0.462	4.82	2.56	ND	ND
SARA	7/25/2016	3	L	5	1.06	0.888	ND	0.614	5.02	2.33	ND	ND	1.36	0.546	2.91	2	1.28	0./14	1.43	ND	//.5	11.5	n/a	n/a	0.76	0.638	4.58	2.57	ND	ND
SARA	7/25/2016	3		7	1.09	0.88	ND	0.532	5.42	3.24	ND		1.52	0.558	2.79	2.48	2.02	0.856	0.454	ND	71.5	9.63	n/a n/a	n/a	0.8	0.646	6.47	2.95		
SARA	7/25/2010	3	1	, 8	0.96	1.46	ND	0.568	4.91	2.67	ND	ND	1.3	0.68	2.07	5.37	1.33	1.03	2.11	1.48	54.4	13.8	n/a	n/a	0.782	0.64	4.49	3.35	ND	ND
SARA	7/25/2016	3	L	COMP	1.06	0.894	ND	0.55	5.26	2.53	ND	ND	1.6	0.582	6.77	2.08	1.51	0.814	2.06	ND	72.3	10.8	n/a	n/a	0.822	0.584	4.97	2.92	ND	ND
SARB	7/20/2016	1	н	1	1.82	ND	ND	ND	3.1	ND	ND	ND	ND	ND	2.12	1.6	ND	ND	ND	5.92	36.4	ND	0.049	0.0428	ND	ND	3.83	1.16	ND	ND
SARB	7/20/2016	1	н	2	ND	ND	ND	ND	3.13	ND	ND	ND	ND	ND	2.05	1.26	1.1	ND	ND	13.3	37.5	ND	ND	ND	ND	ND	4.46	1.01	ND	ND
SARB	7/20/2016	1	н	3	ND	ND	ND	ND	3.27	ND	ND	ND	1	ND	2.32	1.2	1.32	ND	ND	23.8	40.4	ND	ND	0.0209	ND	ND	4.81	ND	ND	ND
SARB	7/20/2016	1	н	4	ND	ND	ND	ND	3.96	ND	ND	ND	ND	ND	2.35	1.19	ND	ND	ND	11.2	37.3	ND	0.0523	ND	ND	ND	3.97	ND	ND	ND
SARB	7/20/2016	1	Н	5	ND	ND	ND	ND	3.29	ND	ND	ND	1.46	ND	2.35	1.4	1.82	ND	ND	26	85.3	ND	ND	ND	ND	ND	6.4	ND	ND	ND
SARB	7/20/2016	1	н	6	1.12	ND	ND	ND	3.55	ND	ND	ND	1.26	ND	2.03	1.5	1.3	ND	14.8	27.2	62.9	ND	ND	ND	ND	ND	5.46	1.25	ND	ND
SARB	7/20/2016	1	н	/ 0	ND	ND	ND		3.27		ND	ND	1 1 00	ND	2.1	1.47	4.14	ND	1.55 ND	16.7	50.6	5.28	ND	0.0453	ND	ND	4.78	1.51	ND	
SARB	7/20/2016	1	н	COMP	ND	ND	ND	ND	2.99	ND	ND	ND	1.56	ND	2.26	1.54	1.33	ND	1.46	17.1	62.2	ND	ND	ND	ND	ND	5.7	1.25	ND	ND
SARB	7/28/2016	2	Н	1	1.79	0.606	1.23	0.71	6.23	ND	ND	ND	0.458	ND	4.69	1.75	1.32	ND	ND	0.858	0.936	0.752	ND	ND	1.23	0.43	5.11	0.736	2.62	ND
SARB	7/28/2016	2	н	2	2.04	0.408	1.62	0.444	7.47	ND	ND	ND	0.606	ND	4.78	1.63	1.55	ND	ND	1.21	16	ND	ND	ND	1.26	0.402	5.4	0.5	3.07	ND
SARB	7/28/2016	2	Н	3	1.68	1.07	1.06	0.668	5.99	1.11	ND	ND	ND	ND	4.85	2.65	1.22	0.456	ND	0.888	4.79	1.55	ND	ND	1.53	0.632	11.5	1.6	2.03	ND
SARB	7/28/2016	2	н	4	1.9	0.688	1.07	0.694	6.33	ND	ND	ND	ND	ND	2.99	1.77	0.874	ND	ND	0.678	11.4	0.668	ND	ND	0.81	0.448	4.16	0.736	1.87	ND
SARB	7/28/2016	2	Н	5	1.92	0.928	1.1	0.768	5.44	ND	ND	ND	ND	ND	3.81	2.01	6.23	ND	ND	ND	1.24	0.89	ND	ND	1.1	0.426	4.95	0.776	2.29	ND
SARB	7/28/2016	2	н	6	1.89	0.534	1.22	0.648	6.2	ND	ND	ND	0.456	ND	5.9	1.82	2.19	ND	ND 0.45	ND	1.07	ND	ND	ND	1.16	0.43	5.51	0.596	2.66	ND
SARB	7/28/2016	2	н	/	0.494	1.78	0.622	1.13	ND 5 71	8.79	ND	ND	ND 0.429	0.466	1.69	4.34	ND 1.62	1.28 ND	0.45	ND	0.54	0.755	ND	ND	ND 1.05	1.11	ND 5.16	4.62	ND 2.46	2.74
SARB	7/28/2016	2	н	COMP	1.09	0.978	0.642	0.738	1.25	1.03	ND	ND	ND	ND	2.22	2.03	0.488	0.462	ND	ND	1.3	1.02	ND	ND	0.594	0.458	1.85	1.17	2.40 ND	ND
SARB	8/4/2016	3	н	1	2.15	ND	0.776	0.544	6.03	ND	ND	ND	0.658	ND	3.8	1.13	2.11	ND	ND	1.46	36.2	ND	4.68	ND	1.26	0.454	5.46	0.484	2.24	ND
SARB	8/4/2016	3	н	2	1.83	0.724	0.61	0.79	5.11	1.27	ND	ND	1.44	0.452	3.27	1.48	2.15	0.598	1.27	ND	50.7	1.89	ND	ND	0.782	0.57	4.64	1.62	1.49	ND
SARB	8/4/2016	3	н	3	2.39	0.666	0.742	0.838	4.27	ND	ND	ND	2.21	0.524	6.84	1.27	5.99	0.472	3.19	0.644	46.7	2.89	2.25	ND	1.73	0.514	6.7	1.29	2.92	ND
SARB	8/4/2016	3	н	4	1.89	0.55	0.63	0.89	4.96	ND	ND	ND	1.13	ND	3.46	1.61	4.86	ND	ND	0.458	54	1.66	ND	ND	0.834	0.416	4.32	0.934	1.75	ND
SARB	8/4/2016	3	Н	5	2.09	0.756	0.658	0.756	5.1	ND	ND	ND	1.03	0.426	4.1	3.1	1.9	0.578	0.488	ND	32.5	2.52	ND	ND	1.04	0.55	5.34	1.65	2.05	ND
SARB	8/4/2016	3	н	6	2.78	0.532	0.878	0.86	7.09	ND	ND	ND	1.16	0.524	6.2	1.16	3.07	ND 0.586	0.482	ND	25.9	1.17	ND	ND	1.6	0.488	7.68	0.878	3.14	ND
SARB	8/4/2016	3	н	8	1 94	0.72	0.952	0.744	4.63	2.09	ND	ND	1.50	0.44	4.70	2 51	9.38	0.560	0 404	ND	45.0	4 49	ND	ND	0.82	0.514	3.94	2 01	2.76	ND
SARB	8/4/2016	3	н	COMP	2.22	0.66	0.996	0.906	6.07	ND	ND	ND	1.15	0.504	4.02	1.59	2.17	ND	1.8	1.29	44.2	1.88	ND	ND	1.15	0.498	5.24	0.942	2.33	ND
SART	7/15/2016	1	Н	1	1.66	0.97	ND	ND	6.22	1.49	ND	ND	0.78	ND	3.17	2.36	1.11	0.49	2.39	1.83	44.7	5.37	ND	ND	0.732	0.484	5.41	2.86	ND	ND
SART	7/15/2016	1	н	2	1	0.74	ND	0.47	5.12	ND	ND	ND	0.526	ND	2.48	1.45	0.904	ND	ND	ND	32.8	1.66	ND	ND	0.588	0.474	4.1	1.79	ND	ND
SART	7/15/2016	1	н	3	1.24	0.888	ND	ND	5.99	ND	ND	ND	ND	ND	2.77	1.89	1.96	0.402	0.65	ND	35.2	2.26	ND	ND	0.742	0.508	8.52	1.97	ND	ND
SART	7/15/2016	1	н	4	1.19	0.84	ND	0.416	5.93	1.01	ND	ND	0.546	ND	3.38	1.52	1.24	0.44	0.48	ND	42	3	ND	ND	0.924	0.486	5.66	2.27	ND	ND
SART	7/15/2016	1	Н	5	1.34	1.09	ND	ND	5.99	1.62	ND	ND	0.426	ND	3.56	2.02	1.41	1.88	0.696	ND	40.5	4.37	ND	ND	0.952	0.476	6.78	2.83	ND	ND
SART	7/15/2016	1	н	6	1.31	0.448	ND	0.544	6.18	ND	ND	ND	ND	ND	3.1	1.19	1.3	ND	ND 0.502	ND	42.5	1.08	ND	ND	0.892	ND	6.21	1.05	ND	ND
SAKI	7/15/2010	1	п	/ 2	0.844	0 (126		0 506	5.45				0.472		3.23	1 22	1.04		2 02	0.98	55 <u>4</u> 0 /	0 604			0.712		4.70	0.514		
SART	7/15/2016	1	н	COMP	1.54	0.622	ND	ND	6,35	ND	ND	ND	0.44	ND	5.47	1.49	1.45	ND	0.51	ND	49	1.99	ND	ND	0.9	0.452	6.57	1.58	ND	ND
SART	7/21/2016	2	н	1	2.07	0.942	0.674	0.826	5.96	1.52	ND	ND	ND	ND	2.72	2.04	1.07	0.544	ND	5.37	25.9	5.13	ND	ND	0.812	0.532	6.56	2.7	1.1	ND
SART	7/21/2016	2	Н	2	1.63	0.728	0.76	0.614	6.32	ND	ND	ND	ND	ND	2.76	1.64	1.02	ND	ND	ND	24.2	2.38	ND	ND	0.808	ND	6.17	1.81	ND	ND
SART	7/21/2016	2	Н	3	2.11	ND	0.644	0.464	6.42	ND	ND	ND	ND	ND	3.14	0.922	1.24	ND	ND	1	30.5	ND	ND	ND	0.904	ND	6.95	0.604	1.02	ND
SART	7/21/2016	2	н	4	3.1	ND	0.756	0.478	6.07	ND	ND	ND	ND	ND	2.7	0.68	1.02	ND	ND	1.42	27.2	ND	ND	ND	0.772	ND	7.9	0.574	ND	ND
SART	7/21/2016	2	H	5	0.94	ND	0.864	0.732	ND	ND	ND	ND	ND	ND	1.22	0.976	ND	ND	ND	0.53	ND	ND	ND	ND	ND	ND	0.848	0.672	ND	ND
SART	7/21/2016	2	H	6	2.54	0.444	0.692	0.812	6.24	ND	ND	ND	ND	ND	2.68	1.86	1.56	ND	ND	0.438	47.5	1.28	ND	ND	0.804	ND	5.48	1.05	ND	ND
SARI	7/21/2016	2	Н	0	2.91	0.45	0.726	0.889	6.81		ND		ND D	ND	5.25	1.2	1.4/	ND	ND	U.498	40.3	12	ND	ND	1.01	0.412	6.42	0.778	1.1 ND	ND
SAK I SART	7/21/2016	2	п	δ COMP	2 82	2,28	0.008	0.722	6.65	6.64					2.87	3.1	1.15	1 8		ND	33 42.4	29.3		ND	0.892	0.434	6,13	6.5	1.09	ND
	., = +, = 510			55.00		0	TL		0.00	0.04					,	0.2		2.5							0.011	0.000	5.25	0.0	1.00	

						-		WET	(mg/L)											TCLP	(mg/L)				-	-		
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Arsenic	Arsenic	Barium	Barium	Cadmium	Cadmium	Chromium	Chromium	Lead	Lead	Mercury	Mercury	Selenium	Selenium	Silver	Silver
SARA	7/26/2016	2	L	1	ND	ND	ND	ND	ND	1.53	647	295	ND	ND	ND	0.543	0.277	ND	ND	ND	7.15	0.531	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	2	ND	ND	ND	ND	1.48	ND	616	545	ND	ND	0.576	ND	0.265	0.283	ND	ND	1.73	4.98	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	3	ND	ND	ND	ND	ND	2.17	387	353	ND	ND	0.541	0.665	0.306	0.243	ND	ND	3.1	1.45	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	4	ND	ND	ND	ND	ND	1.4	681	489	ND	ND	0.506	0.592	0.341	0.218	ND	ND	1.34	1.58	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	5	ND	ND	ND	ND	ND	1.01	675	410	ND	ND	0.521	0.713	0.352	0.235	ND	0.212	0.879	2.35	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	6	ND	ND	ND	ND	ND	2.05	446	335	ND	ND	0.562	0.607	0.399	ND	ND	ND	3.35	0.465	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	7	ND	ND	ND	ND	ND	1.36	361	280	ND	ND	0.581	0.593	0.302	0.221	ND	ND	4.41	2.37	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	8	ND	ND	ND	ND	ND	2.64	699	224	ND	ND	ND	0.516	0.357	ND	ND	ND	2.84	0.382	n/a	n/a	ND	ND	ND	ND
SARA	7/26/2016	2	L	COMP	ND	ND	ND	ND	ND	1.96	548	416	ND	ND	0.507	0.567	0.368	ND	ND	ND	2.43	0.497	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	1	ND	ND	ND	ND	ND	1.05	412	625	ND	ND	0.563	0.79	0.303	0.365	1.23	ND	2.7	2.53	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	2	ND	ND	ND	ND	ND	1.65	637	449	ND	ND	0.634	0.615	0.475	ND	ND	ND	1.83	0.305	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	3	ND	ND	ND	ND	ND	1.03	653	481	ND	ND	0.762	0.784	0.604	0.315	0.221	ND	10.8	2.37	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	4	ND	ND	ND	ND	ND	0.6	649	467	ND	ND	0.601	0.85	0.388	0.412	ND	0.302	2.55	4.31	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	5	ND	ND	ND	ND	ND	1.31	699	621	ND	ND	0.649	0.777	0.372	0.231	0.214	ND	11.2	1.62	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	6	ND	ND	ND	ND	ND	1.19	840	608	ND	ND	0.791	0.92	0.767	0.266	0.317	ND	6.72	1.96	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	7	ND	ND	ND	ND	ND	1.27	980	637	ND	ND	0.764	0.802	0.636	0.205	0.206	ND	7.07	1.23	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	8	ND	ND	ND	ND	ND	1.25	713	678	ND	ND	0.567	0.802	0.52	0.214	0.319	ND	5.88	1.28	n/a	n/a	ND	ND	ND	ND
SARA	7/25/2016	3	L	COMP	ND	ND	ND	ND	ND	1.42	792	661	ND	ND	0.71	0.831	0.514	0.271	0.617	ND	7.21	1.74	n/a	n/a	ND	ND	ND	ND
SARB	7/20/2016	1	Н	1	ND	ND	ND	ND	ND	1.1	640	133	ND	ND	ND	ND	ND	ND	ND	ND	3.77	ND	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	Н	2	ND	ND	ND	ND	ND	1.18	632	146	ND	ND	ND	ND	ND	ND	ND	ND	4.03	ND	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	H	3	ND	ND	ND	ND	ND	1.34	841	84.6	ND	ND	ND	ND	ND	ND	ND	ND	2.17	ND	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	H	4	ND	ND	ND	ND	ND	1.45	636	197	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	<u>H</u>	5	ND	ND	ND	ND	ND	1.74	1340	102	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	H	6	ND	ND	ND	ND	ND	1.55	973	281	ND	ND	ND	ND	ND	ND	ND	ND	2.24	2.47	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	н	7	ND	ND	ND	ND	ND	1.72	959	331	ND	ND	ND	ND	ND	ND	ND	ND	2.71	ND	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	н	8	ND	ND	ND	ND	ND	1.46	1170	162	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	7/20/2016	1	н	COMP	ND	ND	ND	ND	ND	1.65	1070	250	ND	ND	ND	ND	ND	ND	ND	ND	4.65	ND	ND	ND	ND	ND	ND	ND
SARB	7/28/2016	2	H	1	ND	ND	ND	ND	ND	1.91	1030	265	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	7/28/2016	2	<u>н</u>	2	ND	ND	ND	ND	0.474	1.95	872	2.22	ND	ND	ND	ND	0.226	ND	0.404	ND	0.625	ND	ND	ND	0.211	ND	ND	ND
SARD	7/28/2016	2	<u>п</u>	3	ND	ND	ND	ND	ND	2.09	617	041	ND		ND	ND	0.230	ND	0.406	ND	1.00	ND		ND	ND	ND	ND	ND
SARD	7/28/2016	2		4	ND	ND	ND	ND	ND	2.00	702	255	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	
SARB	7/28/2010	2	н	5	ND	ND	ND	ND	ND	2.02	861	241	ND	ND	ND	ND	0.219	ND	0.496	ND	0.918	ND	ND	ND	0.228	ND	ND	ND
SARB	7/28/2010	2	н	7	ND	ND	ND	ND	2.04	2.03 ND	40.4	802	ND	ND	ND	ND	ND	0 228	0.450 ND	0 328	ND	1	ND	ND	ND	ND	ND	ND
SARB	7/28/2010	2	н	, 8	ND	ND	ND	ND	2.04 ND	1.83	774	287	ND	ND	ND	ND	ND	0.228 ND	ND	0.328 ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	7/28/2016	2	н	COMP	ND	ND	ND	ND	1.69	1.05	579	446	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	н	1	ND	ND	ND	ND	ND	2.47	910	0.614	ND	ND	ND	ND	0.32	ND	ND	ND	0.364	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	н	2	ND	ND	ND	ND	ND	1.63	502	470	ND	ND	ND	ND	0.625	ND	0.361	ND	2.74	ND	0.532	ND	ND	ND	ND	ND
SARB	8/4/2016	3	н	3	ND	ND	ND	ND	0.404	1.94	1620	396	ND	ND	ND	ND	0.226	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	н	4	ND	ND	ND	ND	ND	1.89	589	253	ND	ND	ND	ND	0.282	ND	ND	ND	0.538	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	Н	5	ND	ND	ND	ND	ND	1.83	715	398	ND	ND	ND	ND	0.245	ND	ND	ND	0.295	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	н	6	ND	ND	ND	ND	0.402	2.06	1560	263	ND	ND	ND	ND	0.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	н	7	ND	ND	ND	ND	0.508	1.8	940	385	ND	ND	ND	ND	0.324	ND	ND	ND	0.224	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	Н	8	ND	ND	ND	ND	ND	1.65	512	378	ND	ND	ND	ND	0.647	ND	0.475	ND	1.27	ND	ND	ND	ND	ND	ND	ND
SARB	8/4/2016	3	Н	COMP	ND	ND	ND	ND	ND	1.99	782	278	ND	ND	ND	ND	0.625	ND	0.411	ND	1.57	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	1	ND	ND	ND	ND	ND	1.9	664	373	ND	ND	ND	ND	0.264	ND	ND	ND	3.79	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	2	ND	ND	ND	ND	ND	2.47	460	276	ND	ND	ND	ND	0.288	ND	ND	ND	3.76	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	3	ND	ND	ND	ND	ND	2.57	493	268	ND	ND	ND	ND	0.309	ND	ND	ND	2.93	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	4	ND	ND	ND	ND	ND	2.21	535	305	ND	ND	ND	ND	0.311	ND	ND	ND	2.84	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	5	ND	ND	ND	ND	ND	1.88	605	314	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	6	ND	ND	ND	ND	ND	2.55	657	63.9	ND	ND	ND	ND	0.299	ND	ND	ND	2.67	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	7	ND	ND	ND	ND	ND	2.85	411	ND	ND	ND	ND	ND	0.202	ND	ND	ND	0.295	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	8	ND	ND	ND	ND	ND	2.62	586	9.27	ND	ND	ND	ND	ND	ND	ND	ND	0.281	ND	ND	ND	ND	ND	ND	ND
SART	7/15/2016	1	Н	COMP	ND	ND	ND	ND	ND	2.36	682	203	ND	ND	ND	ND	0.326	ND	0.286	ND	2.85	ND	ND	ND	ND	ND	ND	ND
SART	7/21/2016	2	H	1	ND	ND	ND	ND	ND	2.1	392	250	ND	ND	ND	ND	ND	ND	ND	ND	0.339	ND	ND	ND	ND	ND	ND	ND
SART	7/21/2016	2	H	2	ND	ND	ND	ND	ND	2.19	392	143	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SART	7/21/2016	2	Н	3	ND	ND	ND	ND	ND	3.07	444	ND	ND	ND	ND	ND	0.216	ND	ND	ND	3.01	ND	ND	ND	ND	ND	ND	ND
SART	7/21/2016	2	<u>H</u>	4	ND	ND	ND	ND	ND	2.54	421	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.41	ND	ND	ND	ND	ND	ND	ND
SART	//21/2016	2	H	5	ND	ND	ND	ND	2.78	2.61	6.08	0.552	ND	ND	ND	ND	ND	ND	ND	ND	0.368	ND	ND	ND	ND	ND	ND	ND
SARI	7/21/2016	2	н	6	ND	ND	ND	ND	ND	2.3/	545	58.4	ND	ND	ND	ND	0.31	ND	ND	ND	4.41	ND	ND	ND	ND	ND	ND	ND
SARI	7/21/2016	2	н	/	ND	ND	ND	ND	ND	2.89	581	2.23	ND	ND	ND	ND	0.375	ND	ND	ND	3.24	ND	ND	ND	ND	ND	ND	ND
SARI	7/21/2016	2	н	8	ND	ND	ND	ND	ND	2.55	455	113	ND	ND	ND	ND		ND	ND	ND	0.234	ND	ND	ND	ND	ND	ND	ND
SART	//21/2016	2	н	COMP	ND	ND	ND	ND	ND	ND	456	4/4	ND	ND	ND	ND	0.273	ND	ND	ND	2.89	ND	ND	ND	ND	ND	ND	ND

																	V	VET (mg/L)												
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel	Nickel	Selenium	Selenium
SART	7/29/2016	3	Н	1	2.34	1.34	0.634	1.04	6.41	1.43	ND	ND	1.07	0.47	2.53	2.45	1.64	0.664	3.51	3.49	48.8	4.18	ND	ND	0.87	0.512	7.12	2	1.19	ND
SART	7/29/2016	3	Н	2	2.11	1.72	0.808	0.764	6.56	1.25	ND	ND	0.562	0.566	3.69	1.87	1.64	0.718	ND	3.44	48.3	6.12	ND	ND	0.926	0.584	6.9	2.66	1.23	ND
SART	7/29/2016	3	Н	3	3.58	1.38	0.6	0.73	6.35	1.11	ND	ND	0.62	0.438	10.4	3.31	2.02	0.568	ND	7.48	46.4	4.49	ND	ND	0.84	0.528	6.63	2.09	1.09	ND
SART	7/29/2016	3	Н	4	2.69	1.11	0.682	0.802	6.89	ND	ND	ND	0.536	ND	3.07	2.28	2.66	4.49	ND	1.64	55.2	1.23	ND	ND	0.99	0.402	8.13	1.1	1.27	ND
SART	7/29/2016	3	Н	5	2.49	2.12	0.728	0.736	7.12	2	ND	ND	1	0.75	4.19	2.67	2.24	1.24	1.1	5.05	58.2	8.47	ND	ND	1.08	0.724	7.57	3.54	1.43	ND
SART	7/29/2016	3	Н	6	2.72	2.01	0.844	0.73	7.07	2.77	ND	ND	0.618	0.962	8.21	2.59	1.96	0.808	ND	1.84	53.3	11.4	ND	ND	1.04	0.758	10.2	3.82	1.37	ND
SART	7/29/2016	3	Н	7	2.56	1.41	1.66	0.838	7.3	ND	ND	ND	0.68	0.458	3.85	2.01	1.58	0.43	ND	4.26	54.8	3.93	ND	ND	1.02	0.542	8.24	2.11	1.36	ND
SART	7/29/2016	3	Н	8	3.63	0.962	0.672	0.922	7.72	ND	ND	ND	0.882	ND	3.65	1.42	1.75	ND	ND	0.442	61.7	1.15	ND	ND	1.17	0.486	8.78	1.3	1.25	ND
SART	7/29/2016	3	н	СОМР	2.98	1.49	0.638	0.752	7.79	ND	ND	ND	1.15	0.502	3.41	2.72	1.52	ND	1	0.498	59.8	3.46	ND	ND	1.05	0.588	7.68	1.8	1.2	ND
SMM	7/21/2016	1	н	1	ND	ND	ND	ND	1.28	ND	ND	ND	1.14	ND	4.04	2.1	2.8	1.4/	ND	ND	25.7	4.23	ND	ND	ND	ND	8.22	3	ND	ND
SIVIIVI	7/21/2016	1	п	2	ND	ND	ND	ND	ND	ND 9 E1	ND		1.64	ND 1 19	3.95	2.09	2.89	1.1	ND	ND	89.3 50.7	4.52			ND	ND	4.85	2.40	ND	
SNANA	7/21/2016	1	п	3	ND	ND	ND	ND	2 22	8.51 ND	ND		1.09	1.18	2.40	2.97	2.71	1.05		ND	59.7	0.44	ND		ND	ND	5.24	2.21	ND	
SMM	7/21/2010	1	н	4	ND	ND	ND	ND	3.23	4 29	ND	ND	1.03 ND	1.03 ND	2.38	1.35	1.93	1.7 ND	ND	9.1	76.8	12	ND	ND	ND	ND	5.03	1 22	ND	
SMM	7/21/2010	1	н	6	ND	ND	ND	ND	4.09	4.13	ND	ND	ND	ND	1.8	1.05	1.55	ND	ND	8 12	35.6	3.02	ND	ND	ND	ND	3.04	ND	ND	ND
SMM	7/21/2016	1	н	7	ND	ND	ND	ND	4.67	5.79	ND	ND	ND	ND	2.65	1.79	1.89	ND	ND	ND	25.6	4.33	ND	ND	ND	ND	4.94	2.43	ND	
SMM	7/21/2016	1	н	8	ND	ND	ND	ND	3.46	2.02	ND	ND	1.33	ND	1.61	1.5	1.5	ND	ND	6.43	43.8	1.52	ND	ND	ND	ND	3.23	ND	ND	ND
SMM	7/21/2016	1	н	COMP	ND	ND	ND	ND	3.48	3.8	ND	ND	1.59	ND	4.48	2.22	2.16	ND	ND	4.69	54.6	8.89	ND	ND	ND	ND	4.75	1.18	ND	ND
SMM	7/28/2016	2	Н	1	ND	1.35	ND	ND	3.32	4.11	ND	ND	ND	ND	1.79	1.42	2.27	ND	1.29	1.19	167	30.9	ND	ND	ND	ND	3.5	1.79	ND	ND
SMM	7/28/2016	2	Н	2	1.24	ND	ND	ND	4.3	2.52	ND	ND	ND	ND	1.96	1.01	1.69	ND	1.22	30.4	112	2.49	ND	ND	ND	ND	3.49	ND	ND	ND
SMM	7/28/2016	2	Н	3	ND	ND	ND	ND	4.19	9.33	ND	ND	ND	ND	1.91	1.43	1.53	ND	1.41	10.1	38.8	4.81	ND	ND	ND	ND	3.09	1.32	ND	ND
SMM	7/28/2016	2	Н	4	ND	1.42	ND	ND	3.84	5.59	ND	ND	1.25	ND	1.91	1.26	2.07	ND	1.98	30.8	72.3	4.01	ND	ND	ND	ND	4.41	1.09	ND	ND
SMM	7/28/2016	2	Н	5	ND	ND	ND	ND	3.33	2.75	ND	ND	ND	ND	4.83	2.46	1.67	ND	1.22	13.1	52.9	2.71	ND	ND	ND	ND	5	1.07	ND	ND
SMM	7/28/2016	2	Н	6	ND	ND	ND	ND	4.22	21.4	ND	ND	ND	ND	2.33	1.6	1.52	ND	ND	ND	30.2	12.3	ND	ND	ND	ND	3.48	1.65	ND	ND
SMM	7/28/2016	2	Н	7	1	ND	ND	ND	3.24	13.2	ND	ND	1	ND	2.22	1.16	9.19	ND	ND	2.57	48.8	3.69	ND	ND	ND	ND	3.34	ND	ND	ND
SMM	7/28/2016	2	Н	8	ND	1.22	ND	ND	4.06	2.43	ND	ND	ND	ND	2.24	4.92	1.53	ND	ND	44.5	173	6.62	ND	ND	ND	1.37	2.86	ND	ND	ND
SMM	7/28/2016	2	Н	COMP	ND	ND	ND	ND	3.68	4.19	ND	ND	ND	ND	1.9	1.05	1.72	ND	1.25	32.6	62.3	2.43	ND	ND	ND	ND	3.78	ND	ND	ND
SMM	8/2/2016	3	Н	1	ND	1.72	ND	ND	4.04	5.67	ND	ND	ND	ND	2.5	2.07	1.19	ND	ND	1.15	78.5	12.4	ND	ND	ND	1.26	4.83	2.37	ND	ND
SMM	8/2/2016	3	Н	2	ND	ND	ND	ND	3.75	8.26	ND	ND	ND	ND	5.01	3.9	1.24	ND	ND	10.2	81	9.79	ND	ND	ND	ND	5.32	1.97	ND	ND
SMM	8/2/2016	3	Н	3	ND	ND	ND	ND	4.2	5.81	ND	ND	ND	ND	2.41	1.91	1.69	ND	ND	14.7	31.2	3.61	ND	ND	ND	2.03	4.38	1.26	ND	ND
SMM	8/2/2016	3	Н	4	ND	ND	ND	ND	3.84	6.49	ND	ND	ND	ND	2.33	4.02	1.28	ND	ND	ND	57.5	2.23	ND	ND	ND	ND	3.68	1.66	ND	ND
SMM	8/2/2016	3	Н	5	ND	ND	ND	ND	3.82	2.64	ND	ND	ND	ND	1.89	1.93	1.35	ND	ND	14.4	37.5	NDN	ND	ND	ND	ND	4.68	ND	ND	ND
SMM	8/2/2016	3	н	6	ND	ND	ND	ND	3.58	2.44	ND	ND	ND	ND	1.31	2.1	ND	1.56	10.5	1.22	1.94	48	ND	ND	ND	ND	ND	6.45	ND	ND
SMM	8/2/2016	3	н	7	ND	ND	ND	ND	3.69	4.08	ND	ND	ND	ND	1.95	1.68	1.49	ND	ND	11.4	28	1.41	ND	ND	ND	ND	3.55	1.06	ND	ND
SIVIIVI	8/2/2016	3	н	8	ND	ND	ND	ND	3.39	3.31	ND	ND	ND	ND	1.82	4.35	1.83	ND	1.66	7.76	68.4	1.47	ND	ND	ND	ND	4.36	1	ND	ND
SIVIIVI	8/2/2016	3	п		ND	ND	ND	ND	3.81	5.7	ND	ND	1.42	ND	2.55	3.3	1.38		2.05	3.97	55.5	0.82	ND n/a	n/2	ND	ND	4.33	2.28	ND	
SMM	7/22/2016	1	L 	2	ND	ND	ND	ND	3.20	2 96	ND		1.42		2.75	2.92	2.7	1 33	ND	ND	87	26.5	n/a	n/a	ND	ND	6.58	2.04	ND	
SMM	7/22/2010	1	L 	3	ND	ND	ND	ND	4.08	5 33	ND	ND	ND	ND	2.04	2.42	3.91	1.55	1.51	ND	65.6	34	n/a	n/a	ND	ND	4 31	3.76	ND	ND
SMM	7/22/2016	1	-	4	ND	ND	ND	ND	1.01	3.86	ND	ND	ND	ND	2.77	8.11	2.01	1.16	1.66	ND	81.4	11.1	n/a	n/a	ND	ND	6.46	3.22	ND	
SMM	7/22/2016	1	L	5	ND	ND	ND	ND	4.94	6.62	ND	ND	1.13	ND	2.6	1.94	1.34	ND	ND	ND	118	10.9	n/a	n/a	ND	ND	5.26	2.22	ND	ND
SMM	7/22/2016	1	L	6	ND	ND	ND	ND	6.56	6.61	ND	ND	ND	ND	2.4	2.01	1.51	ND	ND	ND	54.1	ND	n/a	n/a	ND	ND	5.58	1.78	ND	ND
SMM	7/22/2016	1	L	7	ND	ND	ND	ND	5.4	4.05	ND	ND	1.04	ND	3.4	2.44	2.33	ND	1.87	ND	66.3	5.66	n/a	n/a	ND	ND	6.32	2.18	ND	ND
SMM	7/22/2016	1	L	8	2.77	ND	ND	ND	3.66	4.49	ND	ND	1	ND	1.71	1.58	1.36	ND	1.98	ND	98.2	11.9	n/a	n/a	ND	ND	3.14	1.71	ND	ND
SMM	7/22/2016	1	L	COMP	ND	2.21	ND	ND	4.42	2.58	ND	ND	1.15	ND	2.58	2.21	2.07	ND	ND	ND	100	2.37	n/a	n/a	ND	ND	7.26	2.17	ND	ND
SMM	7/29/2016	2	L	1	ND	ND	ND	ND	3.73	4.14	ND	ND	ND	ND	2.31	1.14	2.89	ND	ND	18	32.6	2.46	n/a	n/a	ND	ND	6.17	ND	ND	ND
SMM	7/29/2016	2	L	2	ND	ND	ND	ND	3.77	6.4	ND	ND	ND	ND	2.64	1.58	3.03	ND	ND	1.85	17.8	6.8	n/a	n/a	ND	ND	7.1	ND	ND	ND
SMM	7/29/2016	2	L	3	ND	ND	ND	ND	3.43	3.46	ND	ND	ND	ND	3.45	1.77	2.45	1.12	ND	ND	22.4	31	n/a	n/a	ND	ND	7.71	2.06	ND	ND
SMM	7/29/2016	2	L	4	ND	ND	ND	ND	3.89	4.48	ND	ND	ND	3.01	3.48	1.75	2.7	ND	ND	ND	27.8	12.4	n/a	n/a	ND	ND	7.23	2.11	ND	ND
SMM	7/29/2016	2	L	5	ND	ND	ND	ND	4.01	4.3	ND	ND	ND	ND	2.67	2.27	2.33	1.25	ND	ND	34.2	17	n/a	n/a	ND	ND	7.26	2.61	ND	ND
SMM	7/29/2016	2	L	6	ND	ND	ND	ND	5.9	6.42	ND	ND	ND	ND	1.96	1.6	2.34	1.15	ND	ND	16.9	8.21	n/a	n/a	3.09	2.89	4.71	1.65	ND	ND
SMM	7/29/2016	2	L	7	ND	ND	ND	ND	3.75	4.01	ND	ND	ND	ND	1.83	1.63	1.86	12.7	ND	ND	11.3	2.83	n/a	n/a	3.33	2.5	5.09	1.14	ND	ND
SMM	7/29/2016	2	L	8	ND	ND	ND	ND	3.8	6.08	ND	ND	ND	ND	1.81	1.62	1.5	1.39	ND	ND	26.1	4.98	n/a	n/a	6.72	4.99	6.24	1.35	ND	ND
SMM	//29/2016	2	L	COMP	ND	ND	ND	ND	3.63	5.13	ND	ND	ND	ND	2.06	1.71	1.95	ND	ND	ND	26.4	/.76	n/a	n/a	1.17	1.2	6.24	1.13	ND	ND
SIVIIVI	8/3/2016	3	L	1	ND	ND	ND	ND	4.33	3.4/	ND	ND	ND	ND	2.79	2.34	3.52	1.23	ND	ND	27.4	4.94	n/a	n/a	1./	1.46	0.00	2.99	ND	ND
SIVIIVI	8/3/2016 8/2/2016	3	L	2	ND	ND	ND		4.55	/.21					2.25	2.58	2.08	1.02		NU	45.8	5.04	n/a	n/a	ND 1.4	1.02	5.31	1.94		
SIVIIVI	8/3/2010 8/2/2010	3	L	3	ND	1.02			3./9	4./8					2.22	2.88	2.65	1.03			30.0	4.50	n/a	n/a	1.4	1.82	0.54	2.79		
SIMINI	8/2/2010	3	L 	4		1.02			3.00	3 66					5.15 1 91	2.22	1.20	I ND			40 50 F	E U5	11/d n/s	n/a		1 03	5.12	2 06		
SMM	8/3/2010	2	L 	6					4 86	3.00					2 02	2.23	1.20				70.2	8 62	n/a	n/a		1.05	5.42	1 92	ND	
SMM	8/3/2010	2	-	7	ND	ND	ND	ND	2,97	3.68	ND	ND	ND	ND	1.88	3,31	1.63	ND	ND	ND	45.8	5,31	n/a	n/a	ND	ND	5.57	2.07	ND	ND
SMM	8/3/2016	3	Ŀ	8	ND	1.24	ND	ND	4,27	3,42	ND	ND	ND	ND	2.26	2.29	2.24	1.01	ND	ND	50.8	5.89	n/a	n/a	ND	1,16	6,3	3,19	ND	ND
SMM	8/3/2016	3	-	COMP	ND	ND	ND	ND	3,53	3,48	ND	ND	ND	ND	2.39	2.22	1.94	ND	ND	ND	59.4	4,85	n/a	n/a	ND	1.01	7.26	2.47	ND	ND
	-, -, -010	. ~	-																											

								WET	(mg/L)	-	-								1	TCLP	(mg/L)							
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day D	osage	Time	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Arsenic	Arsenic	Barium	Barium	Cadmium	Cadmium	Chromium	Chromium	Lead	Lead	Mercury	Mercury	Selenium	Selenium	Silver	Silver
SART	7/29/2016	3	Н	1	ND	ND	ND	ND	ND	2.41	492	253	ND	ND	ND	ND	0.418	ND	ND	ND	3.89	ND	ND	0.474	ND	ND	ND	ND
SART	7/29/2016	3	Н	2	ND	ND	ND	ND	ND	2.14	514	303	ND	ND	ND	ND	0.408	ND	ND	ND	3.5	ND	ND	1.26	ND	ND	ND	ND
SART	7/29/2016	3	Н	3	ND	ND	ND	ND	ND	2.13	500	269	ND	ND	ND	ND	0.397	ND	0.651	ND	3.25	ND	ND	0.492	ND	ND	ND	ND
SART	7/29/2016	3	Н	4	ND	ND	ND	ND	ND	2.42	620	106	ND	ND	ND	ND	0.218	ND	ND	ND	0.292	ND	ND	ND	ND	ND	ND	ND
SART	7/29/2016	3	Н	5	ND	ND	ND	ND	ND	1.89	694	420	ND	ND	ND	ND	0.463	ND	ND	ND	3.55	ND	ND	1.49	ND	ND	ND	ND
SART	7/29/2016	3	Н	6	ND	ND	ND	ND	ND	2.02	583	426	ND	ND	ND	ND	0.507	0.233	0.225	ND	3.35	ND	ND	2.81	ND	ND	ND	ND
SART	7/29/2016	3	Н	7	ND	ND	ND	ND	ND	2.81	621	228	ND	ND	ND	ND	0.506	ND	ND	ND	3.86	ND	ND	0.724	ND	ND	ND	ND
SART	7/29/2016	3	Н	8	ND	ND	ND	ND	ND	3.45	771	66.5	ND	ND	ND	ND	0.63	ND	ND	ND	3.78	ND	ND	ND	ND	ND	ND	ND
SART	7/29/2016	3	Н	COMP	ND	ND	ND	ND	ND	2.53	565	233	ND	ND	ND	ND	0.48	ND	ND	ND	3.87	ND	ND	1.17	ND	ND	ND	ND
SMM	7/21/2016	1	Н	1	ND	ND	ND	ND	ND	1.58	2130	902	ND	ND	ND	1.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	Н	2	ND	ND	ND	ND	ND	1.84	1410	865	ND	ND	ND	1.46	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	Н	3	ND	ND	ND	ND	ND	2.63	1640	663	ND	ND	ND	1.09	ND	ND	ND	ND	1.12	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	Н	4	ND	ND	ND	ND	ND	1.45	1130	1020	ND	ND	ND	1.09	ND	ND	ND	ND	1.26	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	Н	5	ND	ND	ND	ND	ND	2.34	1200	318	ND	ND	ND	1.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	Н	6	ND	ND	ND	ND	ND	2.51	1140	139	ND	ND	ND	1.74	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	Н	7	ND	ND	ND	ND	ND	1.29	1570	1150	ND	ND	ND	1.13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	Н	8	ND	ND	ND	ND	ND	2.9	1100	45.3	ND	ND	ND	1.34	ND	ND	ND	ND	1.99	ND	ND	ND	ND	ND	ND	ND
SMM	7/21/2016	1	н	COMP	ND	ND	ND	ND	ND	2.1	1660	364	ND	ND	ND	1.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMM	7/28/2016	2	н	1	ND	ND	ND	ND	ND	1.55	707	283	ND	ND	ND	1.95	ND	ND	ND	ND	2.68	ND	ND	ND	ND	ND	ND N=	ND
SMM	7/28/2016	2	н	2	ND	ND	ND	ND	ND	1.42	630	6.37	ND	ND	ND	3.02	ND	ND	ND	ND	1.52	ND	ND	ND	ND	ND	ND	ND
SMM	7/28/2016	2	н	3	ND	ND	ND	ND	ND	1.61	469	212	ND	ND	ND	1.54	ND	ND	ND	ND	1.42	ND	ND	ND	ND	ND	ND	ND
SIVIIVI	7/28/2016	2	н	4	ND	ND	ND	ND	ND	1.62	1030	5/.1	ND	ND	ND	1.44	ND	ND	ND	ND	1.15	ND	ND	ND	ND	ND	ND	ND ND
SIVIIVI	7/28/2016	2	н	5	ND	ND	ND	ND	ND	1.56	836 1200	108	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SIVIIVI	7/28/2016	2	н	6	ND	ND	ND	ND	ND	1.58	1260	393	ND	ND	ND	1.38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SIMIM	7/28/2016	2	н	/	ND	ND	ND	ND	ND	1.76	1150	54	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.20	ND	ND	ND	ND	ND	ND	ND
SIVIIVI	7/28/2016	2	п	8 COMP	ND	ND	ND	ND	ND	1.74	874	7.79	ND	ND	ND	1.14	ND		ND	ND	1.20	ND	ND	ND	ND	ND	ND	ND
SIVIIVI	9/2/2016	2	п		ND		ND	ND	ND	1.05	1400	6.10	ND		ND	1.20	ND		ND	ND	0.50		ND	ND	ND	ND	ND	
SMM	8/2/2016	2		2			ND	ND	ND	2.05	1400	240		ND		1.41	ND		ND	ND	9.59	ND		ND	ND	ND	ND	
SMM	8/2/2010	3	н	3	ND	ND	ND	ND	ND	2.11	11240	349	ND	ND	ND	1.07	ND	ND	ND	ND	2.97	ND	ND	ND	ND	ND	ND	ND
SMM	8/2/2010	3	н	1	ND	ND	ND	ND	ND	2.27	660	682	ND	ND	ND	1.1	ND	ND	ND	ND	2.57	ND	ND	ND	ND	ND	ND	ND
SMM	8/2/2010	3	н	5	ND	ND	ND	ND	ND	2.03	1250	1 35	ND	ND	ND	1.47	ND	ND	ND	ND	2.55	ND	ND	ND	ND	ND	ND	ND
SMM	8/2/2016	3	н	6	ND	ND	ND	ND	2.03	ND	114	1210	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMM	8/2/2016	3	н	7	ND	ND	ND	ND	ND	2.36	900	93	ND	ND	ND	ND	ND	ND	ND	ND	2.41	ND	ND	ND	ND	ND	ND	ND
SMM	8/2/2016	3	н	8	ND	ND	ND	ND	ND	2.51	929	29.1	ND	ND	ND	1	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	ND
SMM	8/2/2016	3	н	COMP	ND	ND	ND	ND	ND	2.61	1130	411	ND	ND	ND	ND	ND	ND	ND	ND	2.81	ND	ND	ND	ND	ND	ND	ND
SMM	7/22/2016	1	L	1	ND	ND	ND	ND	ND	2.12	1340	764	ND	ND	ND	1.36	ND	ND	ND	ND	1.66	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	2	ND	ND	ND	ND	ND	1.1	1250	1020	ND	ND	ND	1.21	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	3	ND	ND	ND	ND	ND	ND	1130	819	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	4	ND	ND	ND	ND	ND	1.02	1370	1120	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	5	ND	ND	ND	ND	ND	1.45	1600	994	ND	ND	ND	1.58	ND	ND	ND	ND	ND	1.16	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	6	ND	ND	ND	ND	ND	1.84	1100	767	ND	ND	ND	1.81	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	7	ND	ND	ND	ND	ND	1.55	1200	947	ND	ND	ND	1.08	ND	ND	ND	ND	ND	1.33	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	8	ND	ND	ND	ND	ND	1.04	534	580	ND	ND	ND	1.08	ND	ND	ND	ND	1.13	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/22/2016	1	L	COMP	ND	ND	ND	ND	ND	1.85	1280	945	ND	ND	ND	1.29	ND	ND	ND	ND	1.63	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/29/2016	2	L	1	ND	ND	ND	ND	ND	1.56	1420	14.6	ND	ND	ND	1.63	ND	ND	ND	ND	1.67	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/29/2016	2	L	2	ND	ND	ND	ND	ND	1.74	1780	343	ND	ND	ND	1.53	ND	ND	ND	ND	1.5	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/29/2016	2	L	3	ND	ND	ND	ND	ND	1.03	2070	1140	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/29/2016	2	L	4	ND	ND	ND	ND	ND	ND	1610	799	ND	ND	ND	ND	ND	ND	ND	ND	1.05	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/29/2016	2	L	5	ND	ND	ND	ND	ND	ND	1550	904	ND	ND	ND	ND	ND	ND	ND	ND	2.46	ND	n/a	n/a	ND	ND	ND	ND
SMM	7/29/2016	2	L	5	ND	ND	ND	ND	ND	1.26	1350	/20	ND	ND	ND	1.28	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SIVIIVI	7/29/2016	2	L	/	ND	ND	ND	ND	ND	1./6	1360	304	ND	ND	ND	1.11	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SIVIN	7/29/2016	2	L	6	ND	ND	ND	ND	ND	1./5	10/0	595	ND	ND	ND	1.12	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SIVIIVI	9/2/2016	2	L 							1.81	2000	410				1.21							n/a	n/a				
SIVIIVI	0/3/2010	2	L 1	2						2.23	2090	1210				1.22							n/a	n/a				
SNANA	8/3/2010	3	L 	2						1 56	1490	020				1.29							n/a	n/a				
SIVIIVI	0/3/2010	2	L 1	3						1.50	1000	025				1.03							n/a	n/a				
SMM	8/3/2010	3	1	4		ND				1.5	<u>1050</u> 817	025 Q/19				ND	ND				2.85		n/a	n/a				
SMM	8/3/2016	3	-	6	ND	ND	ND	ND	ND	2.97	785	621	ND	ND	ND	1.23	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SMM	8/3/2016	3	-	7	ND	ND	ND	ND	ND	2,87	1250	691	ND	ND	ND	1.12	ND	ND	ND	ND	2.65	ND	n/a	n/a	ND	ND	ND	ND
SMM	8/3/2016	3		8	ND	ND	ND	ND	ND	1,81	1530	1020	ND	ND	ND	ND	ND	ND	ND	ND	1.18	ND	n/a	n/a	ND	ND	ND	ND
SMM	8/3/2016	3	-	COMP	ND	ND	ND	ND	ND	1.99	1280	1040	ND	ND	ND	ND	ND	ND	ND	ND	7.2	ND	n/a	n/a	ND	ND	ND	ND
2141141	0/ 3/ 2010	2	-	CONT		110				1.55	1200	1040									7.6		170	170				

																	1	WET (mg/L)												
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel	Nickel	Selenium	Selenium
SSP	7/18/2016	1	Н	1	ND	ND	ND	ND	4.46	2.08	ND	ND	ND	ND	1.98	1.6	ND	ND	1.25	23.1	38.8	1.08	0.0249	ND	ND	ND	3.49	1.03	ND	ND
SSP	7/18/2016	1	Н	2	ND	ND	ND	ND	3.83	2.97	ND	ND	ND	ND	1.88	1.54	ND	ND	1.1	15.3	31.7	ND	ND	ND	ND	1.6	2.81	NDN	ND	ND
SSP	7/18/2016	1	Н	3	ND	ND	ND	ND	5.48	2.47	ND	ND	ND	ND	1.91	1.36	1.6	ND	ND	22.7	9.61	ND	ND	ND	ND	ND	2.3	NDN	ND	ND
SSP	7/18/2016	1	Н	4	ND	ND	ND	ND	5.94	2.52	ND	ND	ND	ND	2.43	2.67	ND	ND	1.36	8.15	40.8	ND	ND	ND	ND	ND	3.63	NDN	ND	ND
SSP	7/18/2016	1	Н	5	ND	ND	ND	ND	6.17	1.98	ND	ND	ND	ND	2.58	2.27	ND	ND	ND	13.7	47.8	ND	ND	ND	ND	ND	4.23	1.08	ND	ND
SSP	7/18/2016	1	Н	6	ND	ND	ND	ND	5.17	2.12	ND	ND	ND	ND	2.76	1.78	ND	ND	2.34	28.9	42.4	ND	ND	ND	ND	ND	3.55	1.13	ND	ND
SSP	7/18/2016	1	Н	7	ND	ND	ND	ND	4.01	3.61	ND	ND	ND	ND	2.41	2.55	1.02	ND	ND	15.8	42.1	2.62	ND	ND	ND	ND	4.41	1.4	ND	ND
SSP	7/18/2016	1	н	8	ND	ND	ND	ND	5.55	2.05	ND	ND	ND	ND	7.58	1.86	1.03	ND	2.11	19.1	47.1	ND	ND	ND	ND	ND	4.17	1.12	ND	ND
SSP	7/18/2016	1	н	COMP	ND	1.29	ND	ND	5.27	1.87	ND	ND	ND	ND	4.45	1.85	1	ND	2.28	26.4	60.6	ND	ND	ND	ND	ND	14.61	1.06	ND	ND
SSP	7/25/2016	2	н	1	ND	1.92	ND	ND	4.36	12	ND	ND	ND	ND	2.28	2.44	ND	ND	ND	12.7	45.8	5	ND	ND	ND	ND	4.69	1.66	ND	ND
55P	7/25/2016	2	п u	2	ND	1.05	ND	ND	3.04	2.0	ND	ND	ND		3.20	2.57	1.21	ND	2.00	1.05	49.9	10.9				ND	4.34	2.49	ND	ND
SSP	7/25/2010	2	н	3	3 14	1.85 ND	ND	ND	4.25	3.69	ND	ND	ND	ND	2.31	2.0	1.21	ND	2.33	632	45.1	3.52	ND	ND	ND	ND	5.33	1 /18	ND	ND
SSP	7/25/2016	2	н		1.57	1.19	ND	ND	5.07	3.24	ND	ND	ND	ND	3.07	1.97	1.06	ND	1.25	1.93	48.4	2.9	ND	ND	ND	ND	5.15	1.7	ND	ND
SSP	7/25/2016	2	н	6	ND	ND	ND	ND	3.24	2.2	ND	ND	ND	ND	3.07	1.7	1.2	ND	2.79	ND	55.1	8.54	ND	ND	ND	ND	4.82	1.75	ND	ND
SSP	7/25/2016	2	Н	7	ND	ND	ND	ND	3.77	2.9	ND	ND	ND	ND	2.16	2.56	ND	ND	3.71	1.35	41.5	24.8	ND	ND	ND	ND	3.94	2.83	ND	ND
SSP	7/25/2016	2	н	8	ND	1.34	ND	ND	4.17	3.8	ND	ND	ND	ND	6.96	1.75	1.08	ND	ND	46.1	47.6	1.28	ND	ND	ND	ND	5.08	1.25	ND	ND
SSP	7/25/2016	2	Н	COMP	ND	ND	ND	ND	3.09	2.9	ND	ND	ND	ND	2.31	1.91	ND	ND	ND	ND	40.7	5.82	ND	ND	ND	ND	4.42	2.05	ND	ND
SSP	8/1/2016	3	Н	1	ND	ND	ND	ND	1.29	4.73	ND	ND	1.14	ND	4.07	1.83	19.3	ND	ND	8.29	61.1	1.5	ND	ND	ND	ND	6.43	1.09	ND	ND
SSP	8/1/2016	3	Н	2	ND	ND	ND	ND	4.35	1.31	ND	ND	ND	ND	4.73	2.84	5.3	ND	ND	10.3	68.5	ND	ND	ND	ND	ND	6.39	1.08	ND	ND
SSP	8/1/2016	3	Н	3	ND	ND	ND	ND	3.35	5.03	ND	ND	ND	ND	2.51	2.06	ND	ND	ND	8.37	46.2	2.11	ND	ND	ND	ND	4.19	1.45	ND	ND
SSP	8/1/2016	3	Н	4	ND	2.05	ND	ND	2.22	5.21	ND	ND	ND	ND	2.76	1.82	9.21	ND	ND	10.2	70.7	3.54	ND	ND	ND	ND	5.21	1.62	ND	ND
SSP	8/1/2016	3	Н	5	ND	ND	ND	ND	3.55	3.92	ND	ND	ND	ND	2.63	1.9	1.11	ND	1.22	8.64	53	2.94	ND	ND	ND	ND	4.29	1.33	ND	ND
SSP	8/1/2016	3	Н	6	ND	ND	ND	ND	2.56	4.23	ND	ND	ND	ND	2.86	1.95	1.19	ND	1.3	10	65.1	3.25	ND	0.0401	1.33	ND	5.78	1.26	ND	ND
SSP	8/1/2016	3	Н	7	ND	ND	ND	ND	4.02	3.98	ND	ND	ND	ND	2.79	2.06	1.42	ND	ND	11.7	68.6	2.55	ND	ND	1.13	ND	5.59	1.1	ND	ND
SSP	8/1/2016	3	н	8	ND	ND	ND	ND	3.53	2.87	ND	ND	ND	ND	2.05	3.08	1.19	ND	ND 1.20	13.9	57.2	ND	ND	ND	ND	ND	4.7	1.02	ND	ND
SSP	8/1/2016	3	Н		ND 1.50	ND	ND	ND	1.76	3.4	ND	ND	ND 0.82	ND	2.57	1.52	1.01	ND	1.36	11	66 22.5	1.44	ND n/a	ND	0.720	ND 0.42	4.42	1.1	ND 0.05C	ND
SSP	7/19/2016	1	IVI M	1	1.59	ND 0.449	0.402	ND	5.05	1.07	ND	ND	0.82	ND	2.59	1.76	0.968	ND	2.08	5./5	32.5	ND	n/a	n/a	0.726	0.42	3.33	0.798	0.856	ND
SSP	7/19/2016	1	IVI M	2	1.04	0.446	0.482	ND	7.44	6.09	ND	ND	1.03	0.508	2 39	2	1 14	0.856	0.59	0.778	24.1 45.8	1.48	n/a	11/d n/a	1.01	0.418	3.12	2 13	1.05	0.546
SSP	7/19/2016	1	M	4	1.81	1.26	0.41	ND	4.95	6.59	ND	ND	0.972	0.466	2.54	2.38	1.36	0.554	0.98	0.564	-5.0	8.29	n/a	n/a	1.01	0.682	4.72	2.64	1.08	0.638
SSP	7/19/2016	1	M	5	1.74	0.964	0.458	ND	5.01	6.56	ND	ND	0.83	0.438	3.23	2.74	1.17	0.588	0.44	0.912	40	7.36	n/a	n/a	1.12	1.02	5.31	2.45	1.19	0.64
SSP	7/19/2016	1	M	6	1.41	2.08	ND	ND	4.66	6.18	ND	ND	0.864	0.692	3.05	3.27	1.52	1.22	0.73	ND	40.7	7.84	n/a	n/a	0.964	1.35	4.63	3.66	1.2	0.954
SSP	7/19/2016	1	М	7	1.73	0.956	0.44	ND	5.23	6.29	ND	ND	0.666	ND	2.81	5.26	1.09	0.586	ND	ND	45.8	4.96	n/a	n/a	0.912	0.772	4.76	2.55	1.19	0.672
SSP	7/19/2016	1	М	8	1.64	0.914	0.416	ND	4.16	3.84	ND	ND	0.824	ND	5.65	6.65	1.03	ND	ND	ND	41.1	3.17	n/a	n/a	0.858	0.572	4.43	1.68	1.14	ND
SSP	7/19/2016	1	М	COMP	1.99	0.662	ND	ND	4.14	2.92	ND	ND	0.616	ND	3.35	2.27	0.936	ND	ND	0.906	37.3	1.07	n/a	n/a	0.718	0.544	5.06	1.33	0.82	ND
SSP	7/26/2016	2	М	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.37	ND	ND	1.13	ND	n/a	n/a	ND	ND	4.04	ND	ND	ND
SSP	7/26/2016	2	М	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	3.26	ND	ND	ND
SSP	7/26/2016	2	М	3	ND	ND	ND	ND	ND	1.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	3.5	ND	ND	ND
SSP	7/26/2016	2	М	4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND	n/a	n/a	ND	ND	3.03	ND	ND	ND
SSP	7/26/2016	2	M	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.36	ND	n/a	n/a	ND	ND	3.81	ND	ND	ND
SSP	7/26/2016	2	M	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.67	ND	n/a	n/a	ND	ND	3.7	ND	ND	ND
SSP	7/26/2016	2	IVI M	/	ND	ND	ND	ND	ND	1.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	n/a	n/a	ND	ND	4.4	ND	ND	ND
SSP	7/26/2016	2	IVI M	o COMP	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	1.62	ND	n/a	11/d n/a		ND	4.37	ND		ND
SSP	8/4/2016	2	M	1	ND	ND	ND	ND	27	2 66	ND	ND	ND	ND	3.05	3.06	1 38	ND	ND	ND	26	5.43	n/a	n/a	ND	ND	6.85	2 22	ND	ND
SSP	8/4/2016	3	M	2	ND	ND	ND	ND	2.55	3.43	ND	ND	ND	ND	3.27	1.74	1.33	ND	ND	1.31	90.8	2.77	n/a	n/a	ND	ND	5.91	1.48	ND	ND
SSP	8/4/2016	3	М	3	1.21	1.03	ND	ND	3.09	5.03	ND	ND	ND	ND	2.2	4.57	1.89	ND	ND	ND	35.8	8.44	n/a	n/a	ND	ND	4.24	2.96	ND	ND
SSP	8/4/2016	3	М	4	ND	ND	ND	ND	2.77	1.89	ND	ND	ND	ND	2.82	2.1	1.58	ND	ND	9.6	26.6	ND	n/a	n/a	ND	ND	5.2	1.33	ND	ND
SSP	8/4/2016	3	М	5	ND	ND	ND	ND	2.92	5.38	ND	ND	ND	ND	2.91	2.11	1.31	ND	ND	ND	56	6.19	n/a	n/a	ND	ND	6.73	1.47	ND	ND
SSP	8/4/2016	3	М	6	ND	ND	ND	ND	2.57	1.71	ND	ND	ND	ND	3.59	3.14	1.33	ND	ND	25.6	35.7	ND	n/a	n/a	ND	ND	6.51	ND	ND	ND
SSP	8/4/2016	3	М	7	ND	ND	ND	ND	2.63	3.9	ND	ND	ND	ND	3.65	2.3	1.52	ND	ND	1.36	35.6	2.21	n/a	n/a	ND	1.08	5.26	1.42	ND	ND
SSP	8/4/2016	3	М	8	ND	ND	ND	ND	2.61	2.46	ND	ND	ND	ND	2.16	1.78	1.49	ND	ND	13.6	33.7	ND	n/a	n/a	ND	ND	5.35	1.11	ND	ND
SSP	8/4/2016	3	М	COMP	ND	ND	ND	ND	2.64	3.05	ND	ND	ND	ND	4.56	1.95	1.24	ND	ND	1.56	41.1	1.77	n/a	n/a	ND	ND	6.31	1.28	ND	ND
SSP	7/20/2016	1	L	1	1.04	0.912	ND	ND	5.42	6.76	ND	ND	0.906	0.642	3.61	3.21	1.57	1.11	ND	ND	48.5	9.57	n/a	n/a	1	0.816	6.23	3.5	ND	ND
SSP	7/20/2016	1	L	2	1.97	1.18	ND	ND	5.39	7.34	ND	ND	1.37	0.892	3.87	3.12	1.86	1.12	6.22	1.15	77.9	39.8	n/a	n/a	1.23	0.96	5.93	4.12	ND	ND
SSP	7/20/2016	1	L	3	1.45	1.95	ND	ND	5.17	6.4Z	ND	ND	1.33	0.872	3.7	2.8	1.86	1.19	1.89	1.78	64.6	57	n/a	n/a	1.33	0.934	1.2	4.31	ND	ND
SSP	7/20/2016	1	L ,	4	1.53	1.04	ND	ND	5.66	8.52	ND	ND	1.17	0./18	4.17	3.07	1.68	0.86	1.89	1.81	65.3	39.8	n/a	n/a	1.25	0.876	5.65	3.8	ND	ND
SSP SCD	7/20/2016	1		5	1.92	1.46			4.91	7.09 8.61			0.984	0.802	2.54	3.15	0.918	0.862	1.22	0.8/	50.9	44.1	n/a	n/a	1.13	1.3	4.54	3.40		
SCD	7/20/2010	1	<u>г</u>	7	2 12	1 02			5.05 4 91	5.01			0.01	0.000	5.24 4 10	2.05	1 24	0.014	1.24 ND	1.07	42.0	5 17	n/a	n/a	1.22	0.040	4.27	2.3		
SSP	7/20/2010	1	1	8	1.04	1.16	ND	ND	10.9	7.62	ND	ND	0.962	0.77	3,13	3,39	0.958	0.936	1.07	0.846	48.6	42 7	n/a	n/a	1,31	1.02	4.15	4.02	ND	ND
SSP	7/20/2016	1	1	COMP	2.07	0.956	ND	ND	4.97	7.94	ND	ND	0.892	0.644	2.47	3,06	1.06	0,902	0.854	1.5	45.3	25.5	n/a	n/a	0.912	0.954	4,63	3.48	ND	ND
	, ==, ====	i –	-																					, •						

								WET	(mg/L)											TCLP	(mg/L)							
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Arsenic	Arsenic	Barium	Barium	Cadmium	Cadmium	Chromium	Chromium	Lead	Lead	Mercury	Mercury	Selenium	Selenium	Silver	Silver
SSP	7/18/2016	1	Н	1	ND	ND	ND	ND	ND	2.81	1040	6.39	ND	ND	ND	1.04	ND	ND	ND	ND	5.37	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	2	ND	ND	ND	ND	ND	2.89	717	4.58	ND	ND	ND	1.51	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	3	ND	ND	ND	ND	2.07	3.21	766	1.79	ND	ND	ND	1.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	4	ND	ND	ND	ND	ND	2.83	1010	4.23	ND	ND	ND	1.87	ND	ND	ND	ND	4.43	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	5	ND	ND	ND	ND	ND	3.67	1130	2.08	ND	ND	ND	1.51	ND	ND	ND	ND	4.51	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	6	ND	ND	ND	ND	ND	3.2	872	5.72	ND	ND	ND	1.94	ND	ND	ND	ND	6.59	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	7	ND	ND	ND	ND	ND	2.56	987	216	ND	ND	ND	ND	ND	ND	ND	ND	6.38	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	8	ND	ND	ND	ND	ND	3.21	1010	2.41	ND	ND	ND	1.87	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SSP	7/18/2016	1	Н	COMP	ND	ND	ND	ND	ND	3.27	1340	3.32	ND	ND	ND	1.82	ND	ND	ND	ND	4.89	ND	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	1	ND	ND	ND	ND	ND	1.71	967	368	ND	ND	ND	1.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	2	ND	ND	ND	ND	ND	1.44	1220	498	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.16	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	3	ND	ND	ND	ND	ND	2	1010	516	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.98	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	4	ND	ND	ND	ND	ND	1.88	1200	301	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	5	ND	ND	ND	ND	ND	2.23	928	304	ND	ND	ND	1.04	ND	ND	ND	ND	1.61	ND	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	6	ND	ND	ND	ND	ND	2.07	1070	389	ND	ND	ND	1	ND	ND	ND	ND	1.47	ND	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	7	ND	ND	ND	ND	ND	1.12	894	643	ND	ND	ND	ND	ND	ND	ND	ND	2.45	2.42	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	8	ND	ND	ND	ND	ND	1.99	1000	64.3	ND	ND	ND	1.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SSP	7/25/2016	2	Н	COMP	ND	ND	ND	ND	ND	1.89	995	455	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	1	ND	ND	ND	ND	ND	2.04	2200	120	ND	ND	ND	ND	ND	ND	ND	ND	11.6	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	2	ND	ND	ND	ND	ND	2.86	1910	1.21	ND	ND	ND	ND	ND	ND	ND	ND	9.8	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	3	ND	ND	ND	ND	ND	2.34	1080	232	ND	ND	ND	ND	ND	ND	ND	ND	10.5	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	4	ND	ND	ND	ND	ND	2.36	1380	354	ND	ND	ND	ND	ND	ND	ND	ND	7.28	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	5	ND	ND	ND	ND	ND	2.49	1180	210	ND	ND	ND	ND	ND	ND	ND	ND	21.3	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	6	ND	ND	ND	ND	ND	2.54	1560	191	ND	ND	ND	ND	ND	ND	ND	ND	15.2	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	7	ND	ND	ND	ND	ND	2.24	1090	168	ND	ND	ND	ND	ND	ND	ND	ND	13.3	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	8	ND	ND	ND	ND	ND	2.6	1140	2.43	ND	ND	ND	ND	ND	ND	ND	ND	14.4	ND	ND	ND	ND	ND	ND	ND
SSP	8/1/2016	3	Н	COMP	ND	ND	ND	ND	ND	2.59	1350	84.3	ND	ND	ND	ND	ND	ND	ND	ND	13.6	ND	ND	ND	ND	ND	ND	ND
SSP	7/19/2016	1	М	1	ND	ND	ND	ND	ND	4.1	627	1.05	ND	ND	0.66	1.45	ND	ND	ND	ND	2.24	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	2	ND	ND	ND	ND	ND	3.55	602	3.67	ND	ND	0.562	1.31	0.218	ND	ND	ND	1.23	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	3	ND	ND	ND	ND	ND	1.76	1010	479	ND	ND	0.455	0.725	0.284	0.225	ND	ND	4.62	0.562	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	4	ND	ND	ND	ND	ND	2.14	1020	665	ND	ND	0.525	0.686	0.295	ND	ND	ND	5.7	1.17	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	5	ND	ND	ND	ND	ND	2.45	1180	750	ND	ND	0.616	1.06	0.306	ND	0.265	ND	2.84	1.11	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	6	ND	ND	ND	ND	ND	1.87	913	1040	ND	ND	0.467	0.791	0.221	0.254	ND	ND	0.833	1.52	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	7	ND	ND	ND	ND	ND	2.54	1020	743	ND	ND	0.546	0.782	ND	ND	ND	ND	1.54	0.362	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	8	ND	ND	ND	ND	ND	3.62	949	429	ND	ND	0.409	0.997	0.312	ND	0.313	ND	4.66	0.369	n/a	n/a	ND	ND	ND	ND
SSP	7/19/2016	1	М	COMP	ND	ND	ND	ND	ND	3.64	694	432	ND	ND	0.493	1.09	0.2	ND	ND	ND	1.04	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/26/2016	2	M	1	ND	ND	ND	ND	ND	ND	932	148	ND	ND	ND	1.02	ND	ND	ND	ND	6.92	3.61	n/a	n/a	ND	ND	ND	ND
SSP	7/26/2016	2	M	2	ND	ND	ND	ND	ND	ND	759	211	ND	ND	ND	1.05	ND	ND	ND	ND	4.75	1.49	n/a	n/a	ND	ND	ND	ND
SSP	7/26/2016	2	M	3	ND	ND	ND	ND	ND	ND	843	ND	ND	ND	ND	2.17	ND	ND	ND	ND	6.97	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/26/2016	2	M	4	ND	ND	ND	ND	ND	ND	8/1	202	ND	ND	ND	1.15	ND	ND	ND	ND	ND	1.66	n/a	n/a	ND	ND	ND	ND
SSP	7/26/2016	2	IVI	5	ND	ND	ND	ND	ND	ND	8/8	ND 20.2	ND	ND	ND	1.43	ND	ND	ND	ND	5.02	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/26/2016	2	IVI	6	ND	ND	ND	ND	ND	ND	884	20.2	ND	ND	ND	1.55	ND	ND	ND	ND	6.34 F.24	1.78	n/a	n/a	ND	ND	ND	ND
55P 5CD	7/20/2010	2	IVI NA	/ 0							1090	0.35				7.03					3 20		n/a	n/a				
SCD	7/26/2010	2	N/	COMP				ND		ND	2000	7 10		ND	ND	174			ND	ND	6 1 /		n/a	n/a	ND	ND	ND	
SCD	8/4/2016	2	M	1				ND		1 79	1420	1020				1.74 ND					1 50		n/a	n/a			ND	ND
SCD	8/4/2010	2	M	2	ND	ND	ND	ND	ND	2.75	1460	402		ND	ND		ND	ND	ND	ND	4 98	ND	n/a	n/2	ND	ND	ND	ND
SSP	8/4/2016	2	M	2	ND	ND	ND	ND	ND	1.55	1150	1140	ND	ND	ND	ND	ND	ND	ND	ND	4.50	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/4/2016	2	M	4	ND	ND	ND	ND	ND	3,22	1620	130	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/4/2016	2	м	5	ND	ND	ND	ND	ND	2,26	1640	434	ND	ND	ND	ND	ND	ND	ND	ND	5,08	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/4/2016	3	M	6	ND	ND	ND	ND	ND	3	1640	2.05	ND	ND	ND	ND	ND	ND	ND	ND	2.07	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/4/2016	3	M	7	ND	ND	ND	ND	ND	2,52	1550	423	ND	ND	ND	ND	ND	ND	ND	ND	4,12	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/4/2016	3	M	8	ND	ND	ND	ND	ND	2,92	1580	90.2	ND	ND	ND	ND	ND	ND	ND	ND	2,16	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/4/2016	3	M	COMP	ND	ND	ND	ND	ND	2.54	1440	376	ND	ND	ND	ND	ND	ND	ND	ND	3.54	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	1	ND	ND	ND	ND	ND	2.07	967	846	ND	ND	0.45	0.663	0.26	0.274	ND	ND	0.694	1.8	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	2	ND	ND	ND	ND	ND	1,51	1320	916	ND	ND	0,469	0,704	0,216	0,316	ND	ND	0,529	2.4	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	3	ND	ND	ND	ND	ND	0.826	1310	872	ND	ND	0.554	0.729	0.249	ND	ND	ND	0.728	0.325	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	4	ND	ND	ND	ND	ND	1.76	1210	837	ND	ND	0.494	1.06	0.215	0.211	ND	ND	0.92	3.06	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	5	ND	ND	ND	ND	ND	0.836	963	947	ND	ND	0.505	0.955	0.203	0.244	ND	ND	0.828	4.22	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	6	ND	ND	ND	ND	ND	1.45	841	780	ND	ND	0.484	0.901	0.209	0.208	ND	ND	0.948	3.96	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	7	ND	ND	ND	ND	ND	3.55	756	824	ND	ND	0.529	1.01	ND	ND	ND	ND	1.36	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	8	ND	ND	ND	ND	0.402	0.844	904	1000	ND	ND	0.505	0.806	0.207	0.303	ND	ND	0.594	3.88	n/a	n/a	ND	ND	ND	ND
SSP	7/20/2016	1	L	COMP	ND	ND	ND	ND	ND	2.11	767	982	ND	ND	0.495	0.964	ND	0.275	ND	ND	0.703	1.74	n/a	n/a	ND	ND	ND	ND
·							•														•	•						

																	١	WET (mg/L)												
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day Dosa	ge Ti	ime	Antimony	Antimony	Arsenic	Arsenic	Barium	Barium	Beryllium	Beryllium	Cadmium	Cadmium	Chromium	Chromium	Cobalt	Cobalt	Copper	Copper	Lead	Lead	Mercury	Mercury	Molybdenum	Molybdenum	Nickel	Nickel	Selenium	Selenium
SSP	7/27/2016	2 L		1	ND	ND	ND	ND	3.91	2.75	ND	ND	ND	ND	5.15	1.67	1.71	ND	ND	ND	49	11.9	n/a	n/a	ND	ND	7.69	3.56	ND	ND
SSP	7/27/2016	2 L		2	ND	ND	ND	ND	5.12	4.88	ND	ND	ND	ND	2.9	1.92	10.8	ND	ND	ND	50.4	6.84	n/a	n/a	ND	ND	6.15	2.61	ND	ND
SSP	7/27/2016	2 L		3	ND	ND	ND	ND	2.53	2.14	ND	ND	ND	ND	3.47	8.62	2.36	ND	ND	ND	61.6	5.84	n/a	n/a	ND	ND	7.75	2.55	ND	ND
SSP	7/27/2016	2 L		4	ND	ND	ND	ND	ND	1.49	ND	ND	ND	ND	3.29	2.04	2.32	ND	ND	ND	50.2	7.32	n/a	n/a	ND	ND	7.29	3.3	ND	ND
SSP	7/27/2016	2 L		5	ND	ND	ND	ND	3.06	4.12	ND	ND	ND	ND	3.08	1.91	1.78	ND	ND	ND	44.3	5.73	n/a	n/a	ND	ND	7.2	2.78	ND	ND
SSP	7/27/2016	2 L		6	1.4	ND	ND	ND	2.47	1.76	ND	ND	ND	ND	3.56	2.86	1.63	ND	ND	ND	50.1	17.7	n/a	n/a	ND	ND	10.4	3.88	ND	ND
SSP	7/27/2016	2 L		7	ND	1.31	ND	ND	3.39	1.55	ND	ND	ND	ND	4.14	2.91	1.72	ND	ND	ND	47.4	6.82	n/a	n/a	ND	ND	8.55	3.9	ND	ND
SSP	7/27/2016	2 L		8	ND	ND	ND	ND	4.09	ND	ND	ND	ND	ND	4.24	2.53	1.54	ND	ND	ND	32.4	26.2	n/a	n/a	ND	ND	7.92	5.46	ND	ND
SSP	7/27/2016	2 L	CC	OMP	ND	1.06	ND	ND	ND	3.99	ND	ND	ND	ND	3.26	2.55	1.61	4.42	ND	ND	41	9.86	n/a	n/a	ND	ND	7.64	3.96	ND	ND
SSP	8/5/2016	3 L		1	1.81	ND	ND	ND	3.29	3.36	ND	ND	ND	ND	2.69	3.05	1.26	ND	ND	ND	68.8	12.7	n/a	n/a	ND	ND	8.02	3.56	ND	ND
SSP	8/5/2016	3 L		2	ND	ND	ND	ND	1.52	3.79	ND	ND	1.77	ND	2.95	2.64	1.31	1.96	ND	ND	42.3	11.4	n/a	n/a	ND	ND	7.6	3.06	ND	ND
SSP	8/5/2016	3 L		3	1.27	ND	ND	ND	3.04	3.24	ND	ND	ND	ND	2.67	3.16	1.19	ND	ND	ND	55	11.5	n/a	n/a	ND	ND	6.68	3.61	ND	ND
SSP	8/5/2016	3 L		4	ND	ND	ND	ND	2.86	3.14	ND	ND	ND	ND	2.56	4.31	1.09	ND	ND	ND	42.9	9.53	n/a	n/a	ND	ND	6.76	3.48	ND	ND
SSP	8/5/2016	3 L		5	ND	ND	ND	ND	3.16	2.92	ND	ND	ND	ND	4.4	3.19	1.26	ND	ND	ND	30.3	12.8	n/a	n/a	ND	ND	5.67	3.55	ND	ND
SSP	8/5/2016	3 L		6	ND	ND	ND	ND	2.96	3.19	ND	ND	ND	ND	2.97	4.48	1.16	ND	ND	ND	49.8	14.4	n/a	n/a	ND	ND	5.84	3.19	ND	ND
SSP	8/5/2016	3 L		7	ND	ND	ND	ND	3.22	2.96	ND	ND	ND	ND	2.57	3.17	1.1	ND	5.7	ND	47.4	25.8	n/a	n/a	ND	ND	5.3	3.93	ND	ND
SSP	8/5/2016	3 L		8	2.95	ND	ND	ND	2.85	3.79	ND	ND	ND	ND	2.93	1.93	1.46	ND	ND	ND	94.5	10.1	n/a	n/a	ND	ND	7.1	2.41	ND	ND
SSP	8/5/2016	3 L	CC	OMP	ND	ND	ND	ND	2.86	4.27	ND	ND	ND	ND	4.06	2.25	1.24	ND	5.86	ND	54.3	15.2	n/a	n/a	ND	ND	6.49	3.07	ND	ND

Notes and abbreviations

COMP = composite sample WET - Waste Extraction Test

TCLP = Toxicity Characteristic Leaching Procedure

ND = not detected

n/a = not analyzed

Concentrations are presented in milligrams per liter

(mg/L)

Detected concentrations are **bolded**

								WET	(mg/L)											TCLP	(mg/L)							
					Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated	Untreated	Treated
Facility	Sample Date	Day	Dosage	Time	Silver	Silver	Thallium	Thallium	Vanadium	Vanadium	Zinc	Zinc	Arsenic	Arsenic	Barium	Barium	Cadmium	Cadmium	Chromium	Chromium	Lead	Lead	Mercury	Mercury	Selenium	Selenium	Silver	Silver
SSP	7/27/2016	2	L	1	ND	ND	ND	ND	ND	ND	1910	1250	ND	ND	ND	ND	1.08	ND	1.15	ND	17.3	2.79	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	2	ND	ND	ND	ND	ND	1.36	1690	1070	ND	ND	ND	ND	ND	ND	1.33	ND	19	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	3	ND	ND	ND	ND	ND	1.23	2030	1400	ND	ND	ND	ND	1.03	ND	1.22	ND	22.6	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	4	ND	ND	ND	ND	ND	1.08	2010	1190	ND	ND	ND	1.04	ND	ND	1.31	ND	21.2	11.4	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	5	ND	ND	ND	ND	ND	1.5	2100	1140	ND	ND	ND	ND	ND	ND	1.18	ND	26.2	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	6	ND	ND	ND	ND	ND	ND	1810	1170	ND	ND	ND	ND	1.2	ND	1.01	ND	22.2	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	7	ND	ND	ND	ND	ND	ND	2220	1230	ND	ND	ND	ND	ND	ND	1.46	ND	68.5	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	8	ND	ND	ND	ND	ND	ND	2180	1330	ND	ND	ND	ND	1.2	ND	1.32	ND	22.5	ND	n/a	n/a	ND	ND	ND	ND
SSP	7/27/2016	2	L	COMP	ND	ND	ND	ND	ND	ND	2050	1370	ND	ND	ND	ND	1.07	ND	ND	ND	31.3	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	1	ND	ND	ND	ND	ND	1.32	1450	899	ND	ND	ND	ND	ND	ND	ND	ND	7.48	1.18	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	2	ND	ND	ND	ND	ND	1.56	1650	833	ND	ND	ND	ND	2.72	ND	ND	ND	3.84	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	3	ND	ND	ND	ND	ND	1.19	1320	996	ND	ND	ND	ND	ND	ND	ND	ND	7.08	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	4	ND	ND	ND	ND	ND	1.9	1370	1090	ND	ND	ND	ND	ND	ND	ND	ND	5.39	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	5	ND	ND	ND	ND	ND	1.52	1220	1330	ND	ND	ND	ND	ND	ND	ND	ND	5.95	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	6	ND	ND	ND	ND	ND	1.27	1210	1020	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	7	ND	ND	ND	ND	ND	1.14	1200	1130	ND	ND	ND	ND	ND	ND	ND	ND	7.03	ND	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	8	ND	ND	ND	ND	ND	1.42	1230	779	ND	ND	ND	1.02	ND	ND	ND	ND	12.6	1.2	n/a	n/a	ND	ND	ND	ND
SSP	8/5/2016	3	L	COMP	ND	ND	ND	ND	ND	1.43	1380	974	ND	ND	ND	ND	ND	ND	ND	ND	7.78	ND	n/a	n/a	ND	ND	ND	ND

Notes and abbreviations

COMP = composite sample WET - Waste Extraction Test

TCLP = Toxicity Characteristic Leaching Procedure

ND = not detected

n/a = not analyzed

Concentrations are presented in milligrams per liter

(mg/L)

Detected concentrations are **bolded**

Table C4 Statistical Comparison of DTSC and ISRI Sample Results Pilot Study Metal Shredder Residue Treatability Study

									W	'MW Test -	Ho: ISRI = DTSC						
						ι	Intreated						Т	reated			
Facility	Dosage	Data Type	Matrix Type	p-Value (adjusted for Ties)	reject H _o ? (alpha = 5%)	DTSC versus ISRI (alpha = 5%)	reject H _o ? (alpha = 10%)	DTSC versus ISRI (alpha = 10%)	DTSC AVG	ISRI AVG	p-Value (adjusted for Ties)	reject H _o ? (alpha = 5%)	DTSC versus ISRI (alpha = 5%)	reject H _o ? (alpha = 10%)	DTSC versus ISRI (alpha = 10%)	DTSC AVG	ISRI AVG
SARA	Н	Pb	WET	1.97E-05	yes	DTSC > ISRI	yes	DTSC > ISRI	69.0	35.3	1.48E-04	yes	DTSC < ISRI	yes	DTSC < ISRI	2.73	11.5
SARA	н	Zn	WET	5.14E-07	yes	DTSC <> ISRI	yes	DTSC > ISRI	658	403	0.643	no	DTSC = ISRI	no	DTSC = ISRI	170	144
SARA	М	Pb	WET	0.00198	yes	DTSC > ISRI	yes	DTSC > ISRI	62.3	44.8	0.0103	yes	DTSC < ISRI	yes	DTSC < ISRI	4.54	15.2
SARA	М	Zn	WET	1.42E-05	yes	DTSC <> ISRI	yes	DTSC > ISRI	629	421	3.30E-03	yes	DTSC > ISRI	yes	DTSC > ISRI	373	245
SARA	L	Pb	WET	4.06E-04	yes	DTSC > ISRI	yes	DTSC > ISRI	59.1	42.7	3.67E-06	yes	DTSC < ISRI	yes	DTSC < ISRI	11.2	30.4
SARA	L	Zn	WET	1.26E-08	yes	DTSC <> ISRI	yes	DTSC > ISRI	694	308	1.08E-06	yes	DTSC > ISRI	yes	DTSC > ISRI	489	251
SARB	н	Pb	WET	0.0204	yes	DTSC < ISRI	yes	DTSC < ISRI	31.8	54.9	0.00771	yes	DTSC < ISRI	yes	DTSC < ISRI	1.87	5.5
SARB	н	Zn	WET	0.00166	yes	DTSC <> ISRI	yes	DTSC > ISRI	848	713	0.902	no	DTSC = ISRI	no	DTSC = ISRI	241	216
SART	н	Pb	WET	0.00198	yes	DTSC > ISRI	yes	DTSC > ISRI	40.7	29.9	0.274	no	DTSC = ISRI	no	DTSC = ISRI	2.93	4.76
SART	н	Zn	WET	5.18E-06	yes	DTSC <> ISRI	yes	DTSC > ISRI	518	365	0.265	no	DTSC = ISRI	no	DTSC = ISRI	177	126
SMM	н	Pb	WET	1	no	DTSC = ISRI	no	DTSC = ISRI	62.6	62.2	1.42E-05	yes	DTSC < ISRI	yes	DTSC < ISRI	8.57	29.5
SMM	н	Zn	WET	1.54E-07	yes	DTSC <> ISRI	yes	DTSC > ISRI	1081	403	0.959	no	DTSC = ISRI	no	DTSC = ISRI	402	289
SMM	L	Pb	WET	0.503	no	DTSC = ISRI	no	DTSC = ISRI	51.8	45.3	1.92E-07	yes	DTSC < ISRI	yes	DTSC < ISRI	10.1	34.3
SMM	L	Zn	WET	3.25E-09	yes	DTSC <> ISRI	yes	DTSC > ISRI	1341	361	1.2613E-06	yes	DTSC > ISRI	yes	DTSC > ISRI	799	336
SSP	н	Pb	WET	0.789	no	DTSC = ISRI	no	DTSC = ISRI	48.7	55.9	0.0356	yes	DTSC < ISRI	yes	DTSC < ISRI	3.91	15.9
SSP	Н	Zn	WET	1.17E-05	yes	DTSC <> ISRI	yes	DTSC > ISRI	1140	738	0.0665	no	DTSC = ISRI	yes	DTSC > ISRI	192	265
SSP	М	Pb	WET	0.0649	no	DTSC = ISRI	yes	DTSC < ISRI	28.1	38.3	1.62E-06	yes	DTSC < ISRI	yes	DTSC < ISRI	2.79	21.3
SSP	М	Zn	WET	9.89E-09	yes	DTSC <> ISRI	yes	DTSC > ISRI	1119	503	0.343	no	DTSC = ISRI	no	DTSC = ISRI	349	380
SSP	L	Pb	WET	0.0328	yes	DTSC > ISRI	yes	DTSC > ISRI	52.5	49.0	6.60E-05	yes	DTSC < ISRI	yes	DTSC < ISRI	19.5	40.3
SSP	L	Zn	WET	2.86E-09	yes	DTSC <> ISRI	yes	DTSC > ISRI	1453	489	2.86E-09	yes	DTSC > ISRI	yes	DTSC > ISRI	1037	440

Notes:

H_o = null hypothesis

AVG = Average

STD DEV = Standard Deviation

WET = Waste Extraction Test

WMW = Wilcoxon-Mann-Whitney

The WMW test was analyzed through ProUCL software provided by the EPA.

The null hypothesis was set as ISRI sample concentrations are the same as DTSC sample concentrations.
APPENDIX D REAGENT SPECIFICATIONS

PRODUCT NAME: HP TREATMENT

CR 4823

MANUFACTURER'S NAME: C. C. I. ADDRESS: 3540 EAST 26TH STREET, VERNON, CALIF 90058 EMERGENCY TEL NO : 800-424-9300 TEL NO FOR INFORMATION : 800-767-9112 DATE REVISED : 02/09/09

HAZARDOUS INGREDIENTS IDENTITY INFORMATION

Hazardous Componen	nts CAS No	OSHA PEL	ACGE	I TLV	Other limits	%
Silicate	1312-76-1	N/Est	N/Est			5-10
SARA Title III	sec.302: Not listed					
	sec.313: listed	Proposition 65	<u>5</u> :	Not lis	sted	
Phosphates SARA Title III	007320-34-5 sec.302: Not listed	5mg/m3 tp	N/Est			4-8
	sec.313: listed	Proposition 65	<u>5</u> :	Not lis	sted	
Anionic & Cationic						
Surfactant Blend	Proprietary	N/Est	N/Est			10-15
SARA Title III	sec.302: Not listed					
	sec.313: listed	Proposition 65	5:	Not lis	sted	

PHYSICAL CHEMICAL CHARACTERISTICS

Boiling Point: 212 °FVapor pressure: 23Vapor Density: < 1</td>Solubility in Water: CompleteSpecific Gravity: 1.07Percent Volatile by volume (%): NAMelting Point: NDEvaporation Rate: < 1</td>Reactivity in water:pH: 11.2Appearance and Odor: Clear, very slight amber liquid. No appreciable

FIRE AND EXPLOSION HAZARD DATA

<u>Flash Point</u> : None <u>Flammable limits</u> : NA <u>LEL</u> : NA <u>UEL</u> : NA <u>Auto Ignition Temperature</u> : NA <u>Extinguishing Media</u> : Use any appropriate medium to extinguish surrounding fire. <u>Special Firefighting Procedures</u> : None <u>Unusual Fire and Explosion Hazards</u> : None

* NA = Not Applicable

HEALTH HAZARD DATA

<u>Routes of Entry</u> : Inhalation : Eyes : x Skin : Ingestion :

<u>Acute Health Hazards</u> : INHALATION : Mist or sprays may cause chest discomfort and coughing EYES : Direct contact may cause eye irritation SKIN : Prolonged or repeated contact will remove body oils from skin causing slight irritation INGESTION : May cause nausea and vomiting by swallowing large amounts of product

Chronic Health Hazards : None known

<u>Signs and Symptoms of Exposure</u> : EYES : Slight irritation and watering of eyes SKIN : Dryness from defatting skin, chapped hands INHALATION : NA INGESTION : Nausea and headache

Medical Conditions Generally Aggravated by Exposure : None known

EMERGENCY & FIRST AID PROCEDURES In all cases, contact physician immediately INHALATION : Remove to fresh air. If irritation of respiratory system occurs or continues obtain medical attention EYE CONTACT : Flush with running water for 15 minutes. If eye irritation occurs, obtain medical attention SKIN CONTACT : Dry and defatted skin can result in dermatitis. If irritation persists obtain medical attention. INGESTION : Give 2 glasses of water. Induce vomiting. Never give anything by mouth to an unconscious or convulsing person. obtain medical attention

TOXICITY DATA

<u>Carcinogenicity</u> : NO NTP ? : NO IARC monographs ? : NO OSHA Regulated ? : NO <u>Oral</u> : ND <u>Dermal</u> : ND <u>Inhalation</u> : ND

REACTIVITY DATA

<u>Stability</u> : Stable <u>Conditions to avoid</u> : NA <u>Incompatibility</u> (Materials to Avoid) : ND <u>Hazardous Decomposition or Byproducts</u> : ND <u>Hazardous Polymerization</u> : Will not occur <u>Conditions to avoid</u> : NA

PRECAUTIONS FOR SAFE HANDLING AND USE

Steps to be Taken in Case Material is Released or Spilled :

SMALL SPILLS : Flush to drain with water

LARGE SPILLS : Dike materials to prevent run-off. Absorb spill with absorbent material and place in suitable container or pick up material with vacuum truck. Flush spill area with water to remove any residue. Notify local, state and federal officials as required

<u>Waste Disposal Method</u>: Material that cannot be used or chemically reprocessed should be disposed of at an approved facility in accordance with any applicable regulations under the Resource Conservation and Recovery Act. Since product is biodegradable and phosphate free, often times it can be disposed of in sewer.

Note: State and local regulations may be more stringent than federal.

<u>Precautions to Be Taken in Handling and Storing</u>: Store in a cool, dry place, keep from freezing, keep container tightly closed when not in use.

Other Precautions : For industrial and institutional use only. Keep out of reach of children.

CONTROL MEASURES

<u>Respiratory protection (Specify type)</u> : None needed. <u>Ventilation</u> : General room <u>Local Exhaust</u> : None <u>Mechanical</u> : None <u>Protective Gloves</u> : None needed <u>Eye Protection</u> : Safety glasses where splashing may occur <u>Other Protective Clothing or Equipment</u> : None <u>Work Hygienic Practices</u> : The recommendations described in

<u>Work Hygienic Practices</u>: The recommendations described in this section are provided as general guidance for minimizing exposure when handling this product. Because use conditions will vary depending upon customer use conditions. Specific use safe handling should be developed by person knowledgeable of the intended use conditions and equipment.

DOT HAZARDOUS INFORMATION

<u>UN/NA</u> : NA <u>Classification</u> : NA <u>Proper Shipping Name</u> : INDUSTRIAL WATER TREATMENT COMPOUND, NON D.O.T. REGULATED.

HMIS HEALTH RATING: 0-INSIGNIFICANT 1-SLIGHT, 2-MODERATE, 3-HIGH, 4-EXTREME HMIS RATING FOR THIS PRODUCT: TOXICITY : 1 FIRE : 0 REACTIVITY : 0

NOTICE

All information, recommendations, and suggestions appearing herein concerning this product are based upon data obtained from the manufacturer and/or recognized technical sources; however, C.C.I. makes no warranty, representation or guaranty as to the accuracy, sufficiency or completeness of the material set forth herein. It is the user's responsibility to determine the safety, toxicity and suitability of his own use, handling and disposal of the product. Additional product literature may be available upon request. Since actual use by others is beyond our control, no warranty, express or implied is made by C.C.I. as to the effects of such use, the results to be obtained or the safety and toxicity of the product nor does C.C.I. assume any liability arising out of use by others of this product.

Date Revised: 02/13/2007

I. PRODUCT IDENTIFICATION

IDENTITY: <u>PV Cement</u>

Classification: Silica Reactive Cement, Cement Stabilizer

Manufacturer: DIVERSIFIED MINERALS INC. 1135 E. Wooley Rd. Oxnard CA, 93030 (805) 247-1069 - Toll Free (888) 364-9595

Poison Center: (800) 356-3129

II. PRODUCT FORMULA/INGREDIENTS

Major Constituents:	CAS Numbers:	TLV
3CaO-SiO ₂	11168-85-3	5 mg/m^3
2CaO-SiO ₂	10034-77-2	5 mg/m^3
3CaO-Al ₂ O ₃ -Fe ₂ O ₃	12042-78-3	5 mg/m^3
$4\text{CaO-Al}_2\text{O}_3\text{-Fe}_2\text{O}_3$	12068-35-8	5 mg/m^3
CaSO ₄ -0.5H ₂ O	13397-24-5	5 mg/m^3
Ca(OH) ₂	37247-91-9	5 mg/m^3

<u>Trace Elements:</u> Trace amounts of naturally occurring materials might be detected during chemical analysis. Such as small amounts of MgO, K_2OSO_4 , CaO and Na₂SO₄ may be present.

III. PHYSICAL DATA

Odor and Appearance:	Wet stone odor, gray fine por	wder.	
Boiling Point:	Not applicable	Evaporation Rate:	Not applicable
Vapor Pressure:	Not applicable	Specific Grav. $(H_2O = 1)$:	3.1
Water Solubility:	Slight (0.1 - 1.0%)	Melting Point:	Not available
Vapor Density (Air = 1):	Not applicable	Volatile by Volume:	0%
pH of Saturated Solution:	Approximately 12.0	Est. weight (per 1/ft ³):	80 - 94 lb/ft ³

IV. FIRE AND EXPLOSION DATA

Not applicable
Not applicable
Not applicable
Not applicable
None
Not applicable
Not applicable

V. HEALTH HAZARDS

SUMMARY:	Inhalation of dust should be avoided. The constituents may cause irritation of eyes, skin, and respiratory tract. Ingestion may cause irritation of gastro-intestinal tract.
Threshold Limit Value (TLV):	Respirable Dust - 2 mg/m ³ . Total Dust - 10 mg/m ³ . 30 million Particles/ft ³ .
Acute Health Effects:	Irritation of eyes, skin, nose, throat, and upper respiratory tract.
Primary Entry Routes:	Inhalation or ingestion.

VI. REACTIVITY DATA

Chemical Incompatibility: Strong acids and Fluorine.

Decomposition Products: Oxides and Carbon Dioxide.

VII. SPILL OR LEAK PROCEDURES

Procedures for Spills: Avoid creation of excessive dust. Wear appropriate personal protective equipment as described in Section VIII, if potential for exposure to excessive dust concentrations.

Waste Management: Use for intended purpose, if possible, otherwise material should be disposed of in accordance with all federal, state, and local regulatory requirements. Take appropriate precautions to prevent excessive exposure to dust by transport or disposal site personnel.

VIII. SPECIAL PROTECTION INFORMATION

Goggles:	Tight-fitting safety goggles should be worn by persons handling this material where ventilation is inadequate.
Skin Protection:	Use barrier creams, gloves, boots and clothing to protect the skin from prolonged contact.
Respirator:	An appropriate NIOSH approved respirator should be worn where ventilation is inadequate or dust concentration may exceed TLV.
Ventilation:	Use local or general exhaust ventilation to keep dust levels as low as possible.
Other:	Engineering controls and operating procedures should be designed to reduce airborne dust concentrations to a minimum.

IX. SPECIAL PRECAUTIONS

Storage Segregation Hazard Classes:

Special Handling Storage:

Alkaline

Avoid storage with incompatible materials noted in Section VI.

Special Workplace Engineering Controls:

Work practices should minimize dust. Refer to Section VIII.

X. ABBREVIATIONS

OSHA - Occupational Safety & Health Administration NIOSH - National Institute for Occupational Safety & Health IARC - International Agency of Research on Cancer NTP - National Toxicology Program CAS - Chemical Abstract Service TLV - Threshold Limit Values

Disclaimer of Liability Notice and Prop. 65 Notice:

This MSDS was prepared, and is to be used only for this product. If this product is used as a component to, or in association with other product(s), or processes, this MSDS information may not be applicable. It is the responsibility of the User(s), or Final Recipient(s) of this product, to distribute this MSDS to employees and personnel.

The conditions or methods of handling, storage, and use of this product are beyond our control and may be beyond our knowledge. FOR THIS AND OTHER REASONS, DMI AND ASSOCIATED COMPANIES DO NOT ASSUME RESPONSIBILITY AND EXPRESSLY DISCLAIM LIABILITY FOR LOSS OR DAMAGE, OR EXPENSE ARISING OUT OF OR IN ANY WAY CONNECTED WITH THE HANDLING, STORAGE, OR USE OF THIS PRODUCT.

While PV Cement is not listed as a carcinogen by NTP, IARC, or OSHA. It may, however, contain trace metal compounds are listed on the NTP and IARC lists of carcinogens.

Proposition 65 Notice: <u>WARNING</u>: This product or area of its manufacture contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

NIOSH conducted a study, "The mortality of U.S. Portland Cement and Quarry Workers" (March 1985) which found. "There is no excess mortality from all causes of death, lung cancer, non-malignant respiratory disease, or ischemic heart disease" among workers studied.

This Warning required by section 25249.6 of the California Health and Safety Code.

Prepared by: Diversified Minerals Inc., Technical Services Dept.

Telephone #: (888) DMI-9595

SAFTEY DATA SHEET

Date prepared

Manufacturer

Envirokem Engineering Services, Inc. 4670 East Waterloo road Stockton, CA 95205 925-683-0838, 209-365-7833

Emergency Telephone Number

1.Product Description:

Product Name: Chemical Description: Synonyms:

METABOND MCX-90, N,R Proprietary Blend None

2. Hazardous Ingredients:

Chemicals : Water: Silicic Acid, Sodium Salt: Proprietary Ingredients: CAS Number 7732-18-5 <10 1344.09-8 >70 >20
 Wt. %
 OSHA PEL
 ACGIH TLV

 Not Established
 Not Established
 Not Established

 Not Established
 Not Established
 Not Established

 Not Established
 Not Established
 Not Established

3. Physical and Chemical Properties:

Appearance: Color: Odor: PH: PH (1% aqueous solution): Specific Gravity & 25 C: Solubility in Water: Freezing Point: Vapor Pressure @ 20.C: Vapor Density: Viscous liquid Red to Hazy Liquid Odorless or Musty Odor Approximately 12.3 Approximately 10.9 1.49 Completely Soluble Not Determined Not Determined Not Determined

4. Health and First Aid Data:

Acute Effects of Overexposure	
Ingestion:	May cause irritation to mouth, esophagus, stomach and gastrointestinal tract.
Skin Absorption:	None currently known
Inhalation	No health affects are known to occur from inhalation of this product. Inhalation of mist or spray may result i8rritation to respiratory tract.
Eye Contact:	Slightly hazardous in case of eye contact (irritant)
Skin Contact:	Slightly hazardous in case of skin contact (irritant)
	Non-sensitizer for skin. Skin inflammation is characterized by itching, scaling, reddening or occasionally blistering
Chronic Effects of:	No chronic effects, either systemic or local are known.
Overexposure:	Not listed by NTP, IARC or OSHA as carcinogen.
Other Health Hazards:	None currently known.
Emergency and First aid Procedu	ire
Skin:	In case of contact, immediately flush skin with plenty of water.
	Remove contaminated clothing and shoes. Wash with water
	until material has been removed. Get medical attention.
Eyes:	Immediately flush eyes with plenty of water for at least 15 minutes
	If easy to do, remove contact lenses, if worn. Hold eyelids apart
	To ensure complete flushing. Do not attempt to neutralize with
	Chemical agents. Get medical attention.
Inhalation:	Remove to fresh air. If not breathing, give artificial respiration.
	If breathing is difficult, give oxygen. Get medical attention.
Ingestion:	If swallowed, DO NOT induce vomiting. Get medical attention
	Immediately. If victim is fully conscious, give a cupful of water.
	Never give anything by mouth to an unconscious person.

5. Fire and Explosion Hazard:

Flammable limits: Extinguishing Media: Hazard to fire-fighters:	This material is noncombustible. This material is compatible with all extinguishing media. Spilled material is very slippery. Dries to form glass film which Easily cuts skin.
Unusual Fire & Explosion Hazard:	None currently known.
Fire-fighting equipment:	The following protective equipment is recommended when this Material is present in the area of a fire: Chemical goggles, body- Covering protective clothing, chemical resistant gloves, rubber Boots and self-contained breathing devices equipped with full Face piece.

6. Reactivity Data:

Stability: Condition to avoid: Material to avoid: Hazardous decomposition: Products:	This material is stable under all conditions of use and storage. None. Generates heat when mixed with acid. May react with ammonia Salts resulting in evolution of ammonia gas. Flammable hydrogen Gas may be produced on contact with aluminum, tin, lead and zinc. Hydrogen Carbon disulfide and dimethylamine may be generated upon acidification.	
7 Spill and Disposal Procedu	re:	
T. opin and Disposal Troobad		
Environmental Fate	This material is not persistent in aquatic systems, but its high ph When undiluted or un-neutralized is acutely harmful to aquatic life.	
Small Spills	Absorb liquid with absorbent material.	
Large Spills	Stop spill at source. Dike area of the spill to prevent spreading. Pump liquids into waste container. Remaining liquids can be absorbed.	
Classification Disposal Method	Disposed material is not hazardous waste. Neutralize and landfill solids in accordance with federal, state and local regulations. Flush neutral liquid to sewer in accordance with federal, state and local regulations and permits.	

8. Exposure Controls / Personal Protection:

Respiratory Protection:	Use a NIOSH-approved dust and mist respirator where spray mist occurs. Observe OSHA regulations for respirator use (29 C.F.R. 1910.134).
Skin Protection:	Wear body-covering protective clothing and gloves.
Eye Protection:	Contact lenses should not be used. Wear chemical goggles or face shield where contact with liquid is likely.
Engineering Control:	Use with adequate ventilation. Keep containers closed. Safety Showers and eyewash fountain should be within direct access.

9. Special Precautions:

Product Storing and Handling:	Do not get in eyes, on skin or on clothing. Wash thoroughly after handling. Soiled clothing should be removed and laundered before use. Do not store product at high temperature or below freezing. Keep containers closed when not in use. Protect containers from physical damage.
	aamago

10. TRANSPORTATION INFORMATION:

DOT UN shipping regulation:	Not regulated as hazardous material for transportation.	
11. Regulatory Information:		
SARA (Superfund Amendments and	Reauthorization Act)	
SARA 302: SARA 312: SARA 313:	No components of this product are listed. Immediate (Acute) Health Hazard. Not a toxic chemical.	
CERCLA (Comprehensive Environm	ental Response and Liability Act)	
CERCLA:	No components of this product are present above the De minimus levels.	
TSCA (Toxic Substances Control Ac	t) Applicability	
TSCA:	All components of this product are listed on the TSCA inventory.	
FDA (Food and Drug Administration		
FDA:	This product is not approved for food contact uses.	
12. Special Precautions:		
Handling and Storing:	Do not get in eyes, on skin or on clothing. Wash thoroughly after handling. Soiled clothing should be removed and laundered before reuse. Store below 120 F.	

The information on the Safety Data Sheet is believed to be accurate obtained from the manufacturer and/or recognized technical sources available to ENVIROKEM. This document is intended only as a guide to the appropriate precautions for handling a chemical by a person trained in chemical handling. ENVIROKEM makes no warranty whatsoever expressed or implied of merchantability of fitness for the particular purpose regarding the accuracy of such data or the results to be obtained from the use thereof. ENVIROKEM assumes no liability and responsibility for injury to recipient or third persons or for any damage to any property and recipient assumes all such risks.

Lehigh Hanson HEIDELBERGCEMENT Group

Safety Data Sheet Portland Cement

Section 1. Identification

GHS product identifier: Chemical name: Other means of identification:	Portland Cement Calcium compounds, calcium silicate compounds, and other calcium compounds com- iron and aluminum make up the majority of this product. Cement, ASTM Type I, II, III, V, Portland Limestone Cement, Plastic Cement, Hydrau Cement, Oilwell Cement, Well Cement, Class G Cement, InterCem, Type L, CSA Typ GUb, GUL, MS, MH, MHL, HE, HEL, LH, LHL, HS
Relevant identified uses of the substance or mixture and uses advised against:	Building materials, construction, a basic ingredient in concrete.
Supplier's details:	300 E. John Carpenter Freeway, Suite 1645 Irving, TX 75062 (972) 653-5500
Emergency telephone number (24 hours):	CHEMTREC: (800) 424-9300

Section 2. Hazards Identification

Overexposure to portland cement can cause serious, potentially irreversible skin or eye damage in the form of chemical (caustic) burns, including third degree burns. The same serious injury can occur if wet or moist skin has prolonged contact exposure to dry portland cement.

 OSHA/HCS status:
 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).

 Classification of the substance or mixture:
 SKIN CORROSION/IRRITATION – Category 1

 SERIOUS EYE DAMAGE/EYE IRRITATION – Category 1
 SKIN SENSITIZATION – Category 1

 CARCINOGENICITY/INHALATION – Category 1A
 CARCINOGENICITY/INHALATION – Category 1A

SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE)

[Respiratory tract irritation] – Category 3

GHS label elements

Hazard pictograms:

Signal word: Hazard statements:

Precautionary statements: Prevention:

Response:

Storage:

Causes severe skin burns and eye damage. May cause an allergic skin reaction. May cause respiratory irritation. May cause cancer.

Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe dust. Use outdoors in a well ventilated area. Wash any exposed body parts thouroughly after handling. Wear protective gloves/protective clothing/eye protection/face protection.Contaminated clothing must not be allowed out of the workplace. If exposed or concerned: Immediately get medical advice/attention if you feel unwell or irritation or rash occurs. If on skin: Wash with plenty of water. Take off contaminated clothing and wash it before reuse. If in eyes: Rinse continuously with water for several minutes. Remove contact lenses, if present and easy to do. If inhaled: Remove person to fresh air and keep comfortable for breathing. If swallowed: Rinse mouth. Do not induce vomiting.

Restrict or control access to stockpile areas (store locked up). Engulfment hazard: To prevent burial or suffocation, do not enter a confined space, such as a silo, bulk truck or other storage container or vessel that stores or contains cement without an effective procedure for assuring

Lehigh Hanson HEIDELBERGCEMENT Group

Disposal:

Hazards not otherwise classified (HNOC):

Supplemental Information:

safety. Store in a well ventilated area. Keep container tightly closed. Dispose of contents/container in accordance with local/regional/national/international regulations.

None known

Respirable Crystalline Silica (RCS) may cause cancer. Repeated inhalation of respirable crystalline silica (quartz) may cause lung cancer according to IARC and NTP; ACGIH states that it is a suspected cause of cancer. Other forms of RCS (e.g., tridymite and cristobalite) may also be present or formed under certain industrial processes.

Section 3. Composition/information on ingredients

Substance/mixture: Chemical Name: Mixture

Calcium compounds, calcium silicate compounds, and other calcium compounds containing iron and aluminum make up the majority of this product.

CAS number/other identifiers

Ingredient name	%	CAS number		
Portland Cement	100%	65997-15-1		
The structure of Portland cement may contain the following in some concentration ranges:				
Calcium oxide	A-B	1305-78-8		
Quartz	C-D	14808-60-7		
Hexavalent chromium*	E-F	18450-29-9		
Portland cement also contains gypsum, limestone and magnesium oxide in various				
concentrations. However, because these components are not classifiable as a hazard under Title				
29 <u>Code of Federal Regulations</u> 1910.1200, they are not required to be listed in this section.				
Gypsum	G-H	13397-24-5		
Limestone	I-J	1317-65-3		
Magnesium oxide	K-L	1309-48-4		

Any concentration shown as a range is to protect confidentiality or is due to process variation. *Hexavalent chromium is included due to dermal sensitivity associated with the component.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First aid measures

Description of necessary first aid measures

Eye Contact:	Get medical attention immediately. Call a poison center or physician. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 20 minutes. Chemical burns must be treated promptly by a physician.
Inhalation:	Seek medical help if coughing or other symptoms persist. Inhalation of large amounts of portland cement requires immediate medical attention. Call a poison center or physician. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If the individual is not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. If unconscious, place in a recovery position and get medical attention immediately. Maintain an open airway.
Skin Contact:	Get medical attention immediately. Heavy exposure to portland cement dust, wet concrete or associated water requires prompt attention. Quickly remove contaminated clothing, shoes, and leather goods such as watchbands and belts. Quickly and gently blot or brush away excess portland cement. Immediately wash thoroughly with lukewarm, gently flowing water and non-abrasive pH natural soap. Seek medical attention for rashes, burns, irritation, dermatitis and prolonged unprotected exposure to wet cement, cement mixtures or liquids from wet cement. Burns should be treated as caustic burns. Portland cement causes skin burns with little warning. Discomfort or pain cannot be relied upon to alert a person to

Lehigh Hanson

HEIDELBERGCEMENTGroup

Ingestion:

a serious injury. You may not feel pain or the severity of the burn until hours after the exposure Chemical burns must be treated promptly by a physician. In the event of any complaints or symptoms, avoid further exposure. Get medical attention immediately. Call a poison center or physician. Have victim rinse mouth thoroughly with water. DO NOT INDUCE VOMITING unless directed to do so by medical personnel. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Have victim drink 60 to 240 mL (2 to 8 oz.) of water. Stop giving water if the exposed person feels sick as vomiting may be dangerous. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Chemical burns must be treated promptly by a physician. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway.

Most important symptoms/effects, acute and delayed potential acute health effects

Eye contact:	Causes serious eye damage.
Inhalation:	May cause respiratory irritation.
Skin contact:	Causes severe burns. May cause an allergic skin reaction.
Ingestion:	May cause burns to mouth, throat and stomach.

Over-exposure signs/symptoms

Eye contact: Inhalation: Skin contact:	Adverse symptoms may include the following: pain, watering and redness. Adverse symptoms may include the following: respiratory tract irritation and coughing. Adverse symptoms may include the following: pain or irritation, redness and blistering may occur, skin burns, ulceration and necrosis may occur.
Ingestion:	Adverse symptoms may include the following: stomach pains.

Indication of immediate medical attention and special treatment needed, if necessary

Notes to physician: Specific treatments: Protection of first-aiders: Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled. Not applicable. No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves.

See toxicological information (Section 11)

Section 5. Fire-fighting measures

Extinguishing media

Suitable extinguishing media:	Use an extinguishing agent suitable for the surrounding fire.		
Unsuitable extinguishing media:	Do not use water jet or water-based fire extinguishers.		
Specific hazards arising from the chemical:	No specific fire or explosion hazard.		
Hazardous thermal decomposition Products:	Decomposition products may include the following materials: carbon dioxide, carbon monoxide, sulfur oxides and metal oxide/oxides.		
Special protective actions for fire- fighters:	Move containers from fire area if this can be done without risk. Use water spray to keep fire- exposed containers cool.		
Special protective equipment for fire- fighters:	Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.		

Section 6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

For non-emergency personnel:

No action shall be taken involving any personal risk or without suitable training. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Do not

Lehigh Hanson

HEIDELBERGCEMENT Group

breathe dust. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment. For personal protective clothing requirements, please see Section 8. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has entered the environment, including waterways, soil or air. Materials can enter waterways through drainage systems.

Methods and materials for containment and cleaning up

Small spill:	Move containers from spill area. Avoid dust generation. Do not dry sweep. Vacuum dust with equipment fitted with a HEPA filter and place in a closed, labeled waste container. Place spilled material in a designated, labeled waste container. Dispose of waste material by using a licensed waste disposal contractor.
Large spill:	Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Avoid dust generation. Do not dry sweep. Vacuum dust with equipment fitted with a HEPA filter and place dust in a closed, labeled waste container. Avoid creating dusty conditions and prevent wind dispersal. Large spills to waterways may be hazardous due to alkalinity of the product. Dispose of waste material using a licensed waste disposal contractor. Note: see section 1 for emergency contact information and Section 13 for waste disposal.

Section 7. Handling and storage

Precautions for safe handling

For emergency responders: Environmental precautions:

Protective measures:	Put on appropriate personal protective equipment (see Section 8). Persons with a history of skin sensitization problems should not be employed in any process in which this product is used. Avoid exposure by obtaining and following special instructions before use. Do not handle until all safety precautions have been read and understood. Do not get in eyes or on skin or clothing. Do not breathe dust. Do not ingest. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Keep in the original container or an approved alternative made from a compatible material and keep the container tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container.
Advice on general occupational hygiene:	Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities:	A key to using the product safely requires the user to recognize that portland cement reacts chemically with water to produce calcium hydroxide which can cause severe chemical burns. Every attempt should be made to avoid skin and eye contact with cement. Do not get portland cement inside boots, shoes or gloves. Do not allow wet, saturated clothing to remain against the skin. Promptly remove clothing and shoes that are dusty or wet with cement mixtures. Launder/clean clothing and shoes before reuse. Do not enter a confined space that stores or contains portland cement unless appropriate procedures and protection are available. Portland cement can build up or adhere to the walls of a confined space and then release or fall suddenly (engulfment).

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

Ingredient name

Exposure limits

Lehigh Hanson

DEL	REPC	CEAAI	ENIT	Grouw
	DERG	CLIVE		orout

Cement, portland, chemicals	ACGIH TLV (United States, 3/2012) TWA: 1 mg/m ³ 8hours. Form: Respirable fraction	
	NIOSH REL (United States, 6/2009) TWA: 5 mg/m ³ 10 hours. Form: Respirable fraction TWA: 10 mg/m ³ 10 hours. Form: Total	
	OSHA PEL (United States, 6/2010) TWA: 5mg/m ³ . 8 hours. Form: Respirable fraction	
	TWA: 15 mg/m ³ . 8 hours. Form: Total dust	
Calcium oxide	ACGIH TLV (United States, 3/2012) TWA: 2 mg/m ³ 8 hours	
	NIOSH REL (United States, 6/2009) TWA: 2mg/m ³ 10 hours.	
	OSHA PEL (United States, 6/2010) TWA: 5 mg/m ³ 8 hours.	
Limestone	NIOSH REL (United States, 6/2009) TWA: 5 mg/m ³ 10 hours. Form: Respirable fraction TWA: 10 mg/m ³ 10 hours. Form: Total	
	OSHA PEL (United States, 6/2010) TWA: 5 mg/m ³ 8 hours. Form: Respirable fraction TWA: 15 mg/m ³ 8 hours. Form: Total dust	
Magnesium oxide	ACGIH TLV (United States, 3/2012) TWA: 10 mg/m ³ 8 hours. Form: Inhalable fraction	
	OSHA PEL (United States, 6/2010) TWA: 15 mg/m ³ 8 hours. Form: Total particulates	
Quartz	ACGIH TLV (United States, 3/2012) TWA: 0.025 mg/m ³ 8 hours. Form: Respirable fraction	
	NIOSH REL (United States, 6/2009) TWA: 0.05 mg/m ³ 10 hours. Form: Respirable dust	
	OSHA PEL Z-3 (United States, 9/2005) TWA: 10 mg/m ³ divided by % SiO ₂ + 2: Respirable TWA: 30 mg/m ³ divided by % SiO ₂ + 2: Total	
Calcium sulfate (gypsum)	ACGIH TLV (United States, 3/2012) TWA: 10 mg/m ³ 8 hours. Form: Respirable fraction	
	NIOSH REL (United States, 6/2009) TWA: 5 mg/m ³ 8 hours. Form: Respirable fraction TWA: 10 mg/m ³ 8 hours. Form: Total dust	
	OSHA PEL Z-1 (United States, 2/2006) TWA: 5 mg/m ³ 8 hours. Form: Respirable fraction TWA: 15 mg/m ³ 8 hours. Form: Total dust	
Appropriate engineering controls:	Use only with adequate ventilation. If user operations generate dust, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne	
Environmental exposure controls:	contaminants below any recommended or statutory limits. Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation.	

HEIDELBERGCEMENTGroup Hygiene measures: Clean water should always be readily available for skin and (emergency) eye washing. Periodically wash areas contacted by portland cement with a pH neutral soap and clean, uncontaminated water. If clothing becomes saturated with portland cement, garments should be removed and replaced with clean, dry clothing. Eye/face protection: To prevent eye contact, wear safety glasses with side shields, safety goggles or face shields when handling dust or wet cement. Wearing contact lenses when working with cement is not recommended. Skin protection Hand protection: Use impervious, waterproof, abrasion and alkali-resistant gloves. Do not rely on barrier creams in place of impervious gloves. Do not get portland cement inside gloves. **Body protection:** Use impervious, waterproof, abrasion and alkali-resistant boots and protective long-sleeved and longlegged clothing to protect the skin from contact with wet portland cement. To reduce foot and ankle exposure, wear impervious boots that are high enough to prevent portland cement from getting inside them. Do not get portland cement inside boots, shoes, or gloves. Remove clothing and protective equipment that becomes saturated with cement and immediately wash exposed areas of the body. Other skin protection: Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved. **Respiratory protection:** Use properly fitted, particulate filter respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels,

Section 9. Physical and chemical properties

Appearance

Physical State:Solid. [PowderColor:Gray or whiteOdor:OdorlessOdor threshold:Not availablepH:>11.5 [Conc. (Melting point:Not availableBoiling point:>1000°C (>18:Flash point:Not availableBurning time:Not availableBurning rate:Not availableEvaporation Rate:Not applicableFlammability (solid, gas):Not applicable

Solid. [Powder] Gray or white Odorless Not available >11.5 [Conc. (% w/w): 1%] Not available >1000°C (>1832°F) Not flammable. Not combustible Not available Not available Not applicable Lower and Upper explosive flammable limits Vapor pressure: Vapor density: Relative density: Solubility: Solubility in water: Partition coefficient: n-octanol/water:

Auto-ignition temperature: Decomposition temperature: SADT: Viscosity:

the hazards of the product, and assigned protection factor of the selected respirator.

Not applicable Not applicable Not applicable 2.3 to 3.1 Slightly soluble in water 0.1 to 1%

Not applicable Not applicable Not available Not available Not applicable

Lehigh Hanson

Section 10. Stability and reactivity

Reactivity:	Reacts slowly with water forming hydrated compounds, releasing heat and producing a strong alkaline solution until reaction is substantially complete.
Chemical Stability:	The product is stable.
Possibility of hazardous reactions:	Under normal circumstances of storage and use, hazardous reactions will not occur.
Conditions to avoid:	No specific data.
Incompatible materials:	Reactive or incompatible with the following materials: oxidizing materials, acids, aluminum and ammonium salt. Portland cement is highly alkaline and will react with acids to produce a violent, heat-generating reaction. Toxic gases or vapors may be given off depending on the acid involved. Reacts with acids, aluminum metals and ammonium salts. Aluminum powder and other alkali and alkaline earth elements will react in wet mortar or concrete, liberating hydrogen gas. Limestone ignites on contact with fluorine and is incompatible with acids, alum, ammonium salts, and magnesium. Silica reacts violently with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride yielding possible fire and/or explosions. Silicates dissolve readily in hydrofluoric acid producing a corrosive gas-silicon tetrafluoride.
Hazardous decomposition products:	Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Section 11. Toxicological information

Information on toxicological effects

Acute toxicity: Irritation/Corrosion:	Portland Cement LD50/LC50 = Not available Skin: May cause skin irritation. May cause serious burns in the presence of moisture. Eyes: Causes serious eye damage. May cause burns in the presence of moisture. Respiratory: May cause respiratory tract irritation.
Sensitization: Mutagenicity:	May cause sensitization due to the potential presence of trace amounts of hexavalent chromium. There are no data available.

Carcinogenicity: Classification below:

Product/ingredient name	OSHA	IARC	ACGIH	NTP
Cement, portland, chemicals	-	-	A4	-
Quartz	-	1	A2	Known to be a human carcinogen.

Reproductive toxicity: Teratogenicity:

There are no data available. There are no data available.

Specific target organ toxicity (single exposure)

Name	Category	Route of Exposure	Target Organs
Calcium oxide	Category 3	Inhalation and skin contact	Respiratory tract irritation, skin irritation
Cement, portland, chemicals	Category 3	Inhalation and skin contact	Respiratory tract irritation, skin irritation

Specific target organ toxicity (repeated exposure)

Name	Category	Route of Exposure	Target Organs
Quartz	Category 1	Inhalation	Respiratory tract and kidneys

Aspiration hazard:

There are no data available.

Information on the likely routes of exposure

Potential acute health effects:	Eye contact: Causes serious eye damage. Inhalation: May cause respiratory irritation. Skin contact: Causes severe burns. May cause an allergic skin reaction. Ingestion: May cause burns to mouth throat and stomach
Symptoms related to the physical, chemical and	Eye contact: Adverse symptoms may include the following: pain, watering, redness. Inhalation: Adverse symptoms may include the following: respiratory tract irritation, coughing
toxicological characteristics:	Skin contact: Adverse symptoms may include the following: pain or irritation, redness, blistering may occur, skin burns, ulcerations and necrosis may occur Ingestion: Adverse symptoms may include the following: stomach pains
Delayed and immediate effects	Short term exposure
and also chronic effects from	Potential immediate effects: No known significant effects or critical hazards.
short and long term exposure:	Potential delayed effects: No known significant effects or critical hazards.
	Long term exposure

Potential immediate effects: No known significant effects or critical hazards.

Section 12. Ecological Information

Toxicity

Calcium oxide Chronic NOEC 100 mg/L Fish-Oreochromis niloticus-Juvenile 46 days	sure
Fresh water (Fledgling, Hatchling, Weanling)	ys

(Koc): Not available.
or critical hazards.

Section 13. Disposal considerations

Disposal methods:

The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Untreated waste should not be released to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe manner. Care should be taken when handling empty containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilled material and runoff, and contact with soil, waterways, drains and sewers.

Section 14. Transportation information

	DOT Classification	IMDG	ΙΑΤΑ
UN number	Not regulated	Not regulated	Not regulated
UN proper shipping name	-	-	-
Transport hazard class(es)	-	-	-
Packing group	-	-	-
Environmental hazards	None	None	None
Additional information	-	-	-

HEIDELBERGCEMENTGroup

Special precautions for user:

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code:

Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage. Not available.

Section 15. Regulatory Information

TSCA 6 final risk management: Chromium, ion (Cr6+)

United States inventory (TSCA 8b): Cements are considered to be statutory mixtures under TSCA. CAS 65997-15-1 is included on the TSCA inventory.

CERCLA: This product is not listed as a CERCLA substance

Clean Air Act Section 112 (b): Hazardous Air Pollutants (HAPs) - Not listed

Clean Air Act Section 602: Class I Substances - Not listed

Clean Air Act Section 602: Class II Substances - Not listed

DEA List I Chemicals: (Precursor Chemicals) - Not listed

DEA List II Chemicals: (Essential Chemicals) - Not listed

SARA 311/312

Classification:

Immediate (acute) health hazard Delayed (chronic) health hazard

Composition/information on ingredients

Name	%	Fire Hazard	Sudden release of pressure	Reactive	Immediate (acute) health hazard	Delayed (chronic) health hazard
Calcium oxide	A-B	No	No	No	Yes	No
Quartz	>0.1	No	No	No	No	Yes
Chromium, ion (Cr6+)	<0.1	No	No	No	Yes	Yes

SARA 313

	Product name	CAS number	%
Form R-Report requirements	Chromium, ion (Cr6+)	8540-29-9	<0.1

State regulations

Massachusetts:	The following components are listed: cement, portland, chemicals, limestone
New York:	None of the components are listed.
New Jersey:	The following components are listed: cement, portland, chemicals, gypsum, limestone
Pennsylvania:	The following components are listed: cement, portland, chemicals, gypsum, limestone

California Prop. 65

WARNING: This product contains crystalline silica and chemicals (trace metals) known to the State of California to cause cancer, birth defects or other reproductive harm. California law requires the above warning in the absence of definitive testing to prove the defined risks do not exist.

Ingredient name	Cancer	Reproductive	No significant risk level	Maximum acceptable dosage level
Quartz	Yes	No	No	No
Chromium, ion (Cr6+)	Yes	Yes	0.001µg/day (inhalation)	8.2 micrograms/day (ingestion)

International regulations

International lists:

Canadian Domestic Substances List (DSL): Portland cement is included on the DSL. Mexico Inventory (INSQ): All components are listed or exempted.

Section 16. Other Information

Date of issue: 06/01/2015 Version: 06/01/2015 Revised Section(s): N/Ap

Notice to reader

While the information provided in this safety data sheet is believed to provide a useful summary of the hazards of portland cement as it is commonly used, the sheet cannot anticipate and provide all of the information that might be needed in every situation. Inexperienced product users should obtain proper training before using this product. In particular, the data furnished in this sheet do not address hazards that may be posed by other materials mixed with portland cement to produce portland cement products. Users should review other relevant material safety data sheets before working with this portland cement or working on portland cement products, for example, portland cement concrete.

SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY Lehigh Hanson, except that the product shall conform to contracted specifications. The information provided herein was believed by the Lehigh Hanson to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information to comply with all laws and procedures applicable to the safe handling and use of product and to determine the suitability of the product for its intended use. Buyer's exclusive remedy shall be for damages and no claim of any kind, whether as to product delivered or for non-delivery of product, and whether based on contract, breach of warranty, negligence, or otherwise shall be greater in amount than the purchase price of the quantity of product in respect of which damages are claimed. In no event shall Seller be liable for incidental or consequential damages, whether Buyer's claim is based on contract, breach of warranty, negligence or otherwise.

Abbreviations

ACGIH — American Conference of Governmental Industrial Hygienists CAS — Chemical Abstract Service CERCLA — Comprehensive Emergency Response and Comprehensive Liability Act CFR — Code of Federal Regulations DOT — Department of Transportation GHS — Globally Harmonized System HEPA — High Efficiency Particulate Air IATA — International Air Transport Association IARC — International Agency for Research on Cancer IMDG — International Maritime Dangerous Goods NIOSH — National Institute of Occupational Safety and Health NOEC — No Observed Effect Concentration NTP — National Toxicology Program OSHA — Occupational Safety and Health Administration PEL — Permissible Exposure Limit REL — Recommended Exposure Limit RQ — Reportable Quantity SARA — Superfund Amendments and Reauthorization Act SDS - Safety Data Sheet TLV — Threshold Limit Value TPQ — Threshold Planning Quantity TSCA — Toxic Substances Control Act TWA — Time-Weighted Average

UN — United Nations

LEHIGH SOUTHWEST CEMENT COMPANY MATERIAL SAFETY DATA SHEET FOR PORTLAND CEMENT

REVISED DATE: August, 2009

PRODUCT/COMPANY IDENTIFICATION

Supplier: Lehigh Southwest Cement Company 12667 Alcosta Blvd. #400 San Ramon, CA 94583 Phone (925) 244-6500 Fax (925) 244-6525 Contact Number: (USE SALES OFFICE PHONE NUMBER)

1.

2.

Chemical Family: Calcium Compounds

Chemical Name and Synonyms: Portland Cement (CAS # 65997-15-1), Hydraulic Cement Types I, I (WRA), II, III, V

Trade Name and Synonyms: Lehigh Portland Cement Types I, II, III, V Lehigh Plastic Cement

EMERGENCY AND FIRST AID

EMERGENCY INFORMATION:	Portland cement is a light gray or white powder. When in contact with moisture in eyes or on skin, or when mixed with water, portland cement becomes highly caustic ($pH > 12$) and will damage or burn (as severely as third-degree) the eyes or skin. Inhalation may cause irritation to the moist mucous membranes of the nose, throat and upper respiratory system or may cause or may aggravate certain lung diseases or conditions. Use exposure controls or personal protection methods described in Section 10.
EYES:	Immediately flush eye thoroughly with water. Continue flushing eye for at least 15 minutes, including under lids, to remove all particles. Call physician immediately.
SKIN:	Wash skin with cool water and pH-neutral soap or a mild detergent. Seek medical treatment if irritation or inflammation develops or persists. Seek immediate medical treatment in the event of burns.
INHALATION:	Remove person to fresh air. If breathing is difficult, administer oxygen. If not breathing, give artificial respiration. Seek medical help if coughing and other symptoms do not subside. Inhalation of large amounts of portland cement require immediate medical attention.
INGESTION:	Do not induce vomiting. If conscious, have the victim drink plenty of water and call a physician immediately.
ACCIDENTIAL RELEASE MEASURES	Clean up spilled material without causing it to become airborne

or mixed with water to limit potential harm. Wear appropriate personal protective equipment. Dispose of waste material according to local, state or federal regulations.

COMPOSITION INFORMATION

DESCRIPTION:

3.

4.

This product consists of finely ground portland cement clinker mixed with a small amount of gypsum (calcium sulfate dihydrate). The portland cement clinker is made by heating to a high temperature a mixture of substances such as limestone, sand, clay and shale. Portland cement is essentially hydraulic calcium silicates contained in a crystalline mass, not separable into individual components. Major compounds are:

3CaO•SiO ₂	Tricalcium Silicate	CAS #12168-85-3
2CaO•SiO ₂	Dicalcium Silicate	CAS #10034-77-2
3CaO•Al ₂ O ₃	Tricalcium Aluminate	CAS #12042-78-3
4CaO•Al ₂ O ₃ •Fe ₂ O ₃	Tetracalcium	CAS #12068-35-8
	aluminoferrite	
CaSO ₄ •2H ₂ O	Calcium Sulfate	CAS #7778-18-9
	dihydrate (Gypsum)	(CAS #13397-24-5)

HAZARDOUS INGREDIENTS

COMPONENT	OSHA PEL (8-Hour TWA)	ACGIH TLV-TWA (1995-1996)	NIOSH REL (8-Hour TWA)
Portland Cement (CAS #65997-15-1) 50 to 95% by weight	5 mg respirable dust/m ³ 15 mg total dust/m ³	10 mg total dust/m ³	
Calcium sulfate (CAS #7778-18-9) [Gypsum (CAS #13397-24-5)] 0 to 10% by weight	5 mg respirable dust/m ³ 15 mg total dust/m ³	10 mg total dust/m ³	
Iron oxide (CAS #1309-37-1) 0 to 15% by weight	10 mg/m ³	5 mg/m ³	
Calcium carbonate (CAS #1317-65-3) 0 to 5% by weight	5 mg respirable dust/m ³ 15 mg total dust/m ³	10 mg total dust/m ³	
Magnesium oxide (CAS #1309-48-4) 0 to 5% by weight	15 mg total dust/m ³	10 mg total dust/m ³	
Calcium oxide (CAS #1305-78-8) 0 to 5% ¹ by weight	5 mg/m ³	2 mg/m ³	
Crystalline silica (CAS #14808-60-7) 0 to 5% by weight	$\frac{10 \text{ mg of respirable dust/m}^3}{\% \text{ SiO}_2 + 2}$ $\frac{30 \text{ mg of total dust/m}^3}{\% \text{ SiO}_2 + 2}$ $\frac{250 \text{ million particles/ft}^3}{\% \text{ SiO}_2 + 5}$	0.05 mg respirable quartz/m ³	0.05 mg respirable quartz dust/m ³

TRACE INGREDIENTS:

Due to the use of substances mined from the earth's crust, trace amounts of naturally occurring, potentially harmful constituents may be detected during chemical analysis. Portland cement may contain up to 0.75% insoluble residue. A small amount of this residue includes free crystalline silica. Portland cement also may contain trace (<0.05%) amounts of chromium salts or compounds (including hexavalent chromium) or other metals (including nickel compounds) found to be hazardous or toxic in some chemical forms. These metals are present mostly as trace substitutions within the principal minerals. Other trace constituents may include potassium and sodium sulfate compounds.

¹ If Portland/Lime blended product "0 to 25%" values.

5. HAZARD IDENTIFICATION

POTENTIAL HEALTH EFFECTS:	NOTE: Potential health effects may vary depending upon the duration and degree of exposure. To reduce or eliminate health hazards associated with this product, use exposure controls or personal protection methods as described in Section 10.
EYE CONTACT:	(Acute/Chronic) Exposure to airborne dust may cause immediate or delayed irritation or inflammation of the cornea. Eye contact by larger amounts of dry powder or splashes of wet portland cement may cause effects ranging from moderate eye irritation to chemical burns and blindness.
SKIN CONTACT:	(Acute) Exposure to dry portland cement may cause drying of the skin with consequent mild irritation or more significant effects attributable to aggravation of other conditions. Discomfort or pain cannot be relied upon to alert a person to a hazardous skin exposure.
	(Chronic) Dry portland cement coming in contact with wet skin or exposure to wet portland cement may cause more severe skin effects, including thickening, cracking or fissuring of the skin. Prolonged exposure can cause severe skin damage in the form of chemical (caustic) burns.
	(Acute/Chronic) Some individuals may exhibit an allergic response upon exposure to portland cement. The response may appear in a variety of forms ranging from a mild rash to severe skin ulcers.
INHALATION:	(Acute) Exposure to portland cement may cause irritation to the moist mucous membranes of the nose, throat and upper respiratory system. Pre-existing upper respiratory and lung diseases may be aggravated by inhalation of portland cement.
	(Chronic) Inhalation exposure to free crystalline silica may cause delayed lung injury including silicosis, a disabling and potentially fatal lung disease, and/or cause or aggravate other lung diseases or conditions.
INGESTION:	(Acute/Chronic) Internal discomfort or ill effects are possible if large quantities are swallowed.
CARCINOGENIC POTENTIAL:	Portland cement is not recognized as a carcinogen by NTP, OSHA, or IARC. However, it may contain trace amounts of heavy metals recognized as carcinogens by these organizations. In addition, IARC classifies crystalline silica, a trace constituent, as a known human carcinogen (Group I). NTP has characterized respirable silica as "reasonably anticipated to be a carcinogen." (See also Section 13.)

PHYSICAL/CHEMICAL DATA

6.

8.

SPILL:

APPEARANCE/ODOR:	Gray, white or colored powder, odorless	PHYSICAL STATE:	Solid (Powder)
BOILING POINT:	>1000°C	MELTING POINT:	Not applicable
VAPOR PRESSURE:	Not applicable	VAPOR DENSITY:	Not applicable
pH (IN WATER) (ASTM D 1293-95)	12 to 13	SOLUBILITY IN WATER:	Slightly soluble (0.1% to 1.0%)
SPECIFIC GRAVITY (H_2O = 1.0):	3.15	EVAPORATION RATE:	Not applicable
7 FIRE AND EXPLOSION			
	N		
FLASH POINT:	None	LOWER EXPLOSIVE LIMIT:	None
AUTO IGNITION TEMPERATURE:	Not combustible	UPPER EXPLOSIVE LIMIT:	None
AUTO IGNITION TEMPERATURE: FLAMMABLE LIMITS	Not combustible Not applicable	UPPER EXPLOSIVE LIMIT: SPECIAL FIRE FIGHTING PROCEDURES:	None
AUTO IGNITION TEMPERATURE: FLAMMABLE LIMITS EXTINGUISHING MEDIA:	Not combustible Not applicable Not combustible	UPPER EXPLOSIVE LIMIT: SPECIAL FIRE FIGHTING PROCEDURES: UNUSUAL FIRE AND EXPLOSION HAZARDS:	None None

STABILITY AND REACTIVITY DATA

STABILITY:	Product is stable. Keep dry until used.	
CONDITIONS TO AVOID:	Unintentional contact with water. Contact with water will result in hydration and produces (caustic) calcium hydroxide.	
INCOMPATIBILITY:	Wet portland cement is alkaline. As such, it is incompatible with acids, ammonium salts and aluminum metal.	
HAZARDOUS DECOMPOSITION:	Will not occur.	
HAZARDOUS POLYMERIZATION:	Will not occur.	
9. PRECAUTIONS FOR HANDLING, STORAGE AND DISPOSAL		
HANDLING AND STORAGE	Keep dry until used. Handle and store in a manner so that airborne dust does not exceed applicable exposure limits. Use adequate ventilation and dust collection. Use exposure control and personal protection methods as described in Section 10.	

Use dry clean-up methods that do not disperse dust into the air or entry into surface water. Material can be used if not contaminated. Place in an appropriate container for disposal or use. Avoid inhalation of dust and contact with skin and eyes. Use exposure control and personal protection methods as described in Section 10. **DISPOSAL:**

Comply with all applicable local, state and federal regulations for disposal of unusable or contaminated materials. Dispose of packaging/containers according to local, state and federal regulations.

10. EXPOSURE CONTROLS/PERSONAL PROTECTION

RESPIRATORY PROTECTION:	Use local exhaust or general dilution ventilation to control dust levels below applicable exposure limits. Minimize dispersal of dust into the air.
	If local or general ventilation is not adequate to control dust levels below applicable exposure limits or when dust causes irritation or discomfort, use MSHA/NIOSH approved respirators.
EYE PROTECTION:	Wear safety glasses with side shields or goggles to avoid contact with the eyes. In extremely dusty environments and unpredictable environments, wear tight-fitting unvented or indirectly vented goggles to avoid eye irritation or injury. Contact lenses should not be worn when handling cement or cement containing products.
SKIN PROTECTION:	Wear impervious abrasion- and alkali-resistant gloves, boots, long-sleeved shirt, long pants or other protective clothing to prevent skin contact. Promptly remove clothing dusty with dry portland cement or clothing dampened with moisture mixed with portland cement, and launder before re-use. If contact occurs, wash areas contacted by material with pH neutral soap and water.

11. TRANSPORTATION DATA

Portland cement is not hazardous under U.S. DOT regulations.

12. TOXICOLOGICAL AND ECOLOGICAL INFORMATION

For a description of available, more detailed toxicological and ecological information, contact Lehigh Cement Company.

13. OTHER REGULATORY INFORMATION

Status under US OSHA Hazard Communication Rule 29 CFR 1910.1200:	Portland cement is considered a hazardous chemical under this regulation and should be included in the employer's hazard communication program.
Status under CERCLA/Superfund, 40 CFR 117 and 302:	Not listed.
Hazard Category under SARA (Title III), Sections 311 and 312:	Portland cement qualifies as a hazardous substance with delayed health effects.
Status under SARA (Title III), Section 313:	Maybe subject to reporting requirements under Section 313. Contact sales office for further information.

Status under TSCA (as of May 1997):	Some substances in portland cement are on the TSCA inventory list.
Status under the Federal Hazardous Substances Act:	Portland cement is a hazardous substance subject to statutes promulgated under the subject act.
Status under California Proposition 65:	This product contains crystalline silica, a substance known to the State of California to cause cancer. This product also may contain trace amounts of heavy metals known to the State of California to cause cancer, birth defects or other reproductive harm.

14. OTHER INFORMATION

This MSDS provides information on various types of portland cement products. A particular product's composition may vary from sample to sample. The information provided herein is believed by Lehigh Cement Company to be accurate at the time of preparation or prepared from sources believed to be reliable. Health and safety precautions in this data sheet may not be adequate for all individuals or situations. Users have the responsibility to comply with all laws and procedures applicable to the safe handling and use of the product, to determine the suitability of the product for its intended use, and to understand possible hazards associated with mixing portland cement with other materials. This product neither contains nor is directly manufactured with any controlled ozone depleting substances, Class I and II. SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY LEHIGH CEMENT COMPANY.

ABBREVIATIONS

American Conference of Governmental Industrial Hygienists
American Society for Testing and Materials
Chemical Abstract Service
Comprehensive Environmental Response, Compensation and Liability Act
Code of Federal Regulations
Cubic foot
International Agency for Research on Cancer
Cubic meter
Milligram
Mine Safety and Health Administration
National Institute for Occupational Safety and Health
National Toxicology Program
Occupational Safety and Health Administration
Permissible Exposure Limit
Recommended Exposure Limit
Superfund Amendments and Reauthorization Act
Threshold Limit Value
Toxic Substance Control Act
Time Weighted Average

APPENDIX E STANDARD OPERATING PROCEDURES

MEMORANDUM

TO:	Emily Mosen

FROM: Michael Choratch

XC:

SUBJECT: SOP for preparing metal shredder residue samples for Terraphase Engineering.

- 1. The as-received samples will be logged in (assigned a HRI number).
- 2. Each sample will be weighed.
- 3. Each sample will be screened at 2mm and both the plus and minus 2mm fractions will be weighed.
- 4. The plus 2mm sample will be frozen in liquid nitrogen then knife-milled in a single pass.
- 5. The milled sample will be screened at 2mm.
- 6. The plus 2mm from the first pass will be frozen in liquid nitrogen then knife-milled.
- 7. The milled sample will be screened at 2mm and any remaining plus 2mm material will be frozen and knife milled in a third pass (if necessary).
- 8. All minus 2mm products will be recombined, weighed, blended and packaged.
- 9. All weights will be emailed to the client at the completion of each batch.
- 10. After each sample we clean the mill with acetone and a wire brush to ensure decontamination.

BC LABORATORIES, INC.

STANDARD OPERATING PROCEDURES METHOD 1320 MULTIPLE EXTRACTION PROCEDURE

UnControlled Copy: Issued to: Approved by: Inorganic Supervisor Approval Date: 12/02/2015 Effective Date: 12/02/2015 Printed Date: Location: Printed By:

1.0 SCOPE AND APPLICATION

1.1 The Multiple Extraction Procedure (MEP) described in this method is designed to simulate the leaching that a waste will undergo from repetitive precipitation of acid rain on an improperly designed sanitary landfill. The repetitive extractions reveal the highest concentration of each constituent that is likely to leach in a natural environment. Method 1320 is applicable to liquid, solid, and multiphase samples.

2.0 SUMMARY OF METHOD

2.1 Waste samples are extracted according to the Extraction Procedure Toxicity Test (Method 1310, Chapter 8) and analyzed for the constituents of concern listed in Chapter 7, Table 7-1: Maximum Concentration of Contaminants for Characteristic of EP Toxicity, using the 7000 and 8000 series methods. Then the solid portions of the samples that remain after application of Method 1310 are re-extracted nine times using synthetic acid rain extraction fluid. If the concentration of any constituent of concern increases from the 7th or 8th extraction to the 9thextraction, the procedure is repeated until these concentrations decrease.

3.0 INTERFERENCES

3.1 Potential interferences that may be encountered during analysis are discussed in the appropriate analytical methods.

4.0 APPARATUS AND MATERIALS

4.1 Refer to Method 1310.

5.0 **REAGENTS**

- 5.1 Refer to Method 1310.
- **5.2** Sulfuric acid: nitric acid, 60/40 weight percent mixture: Cautiously mix 60 g of concentrated sulfuric acid with 40 g of concentrated nitric acid.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 Refer to Method 1310.

7.0 **PROCEDURE**

- 7.1 Run the Extraction Procedure (EP) test in Method 1310
 - 7.1.1 Landfill leachate will be used for all 10 extractions without pH modification for the modified procedure.

[S:\WPDOC\WORDoc\LAB_DOCS\SOPS\EPA1320R0	STATUS: REVISION 0	EFFECTIVE DATE: 12/02/15	PAGE 1 of 3
--	--------------------	--------------------------	-------------

BC LABORATORIES, INC.

STANDARD OPERATING PROCEDURES METHOD 1320 MULTIPLE EXTRACTION PROCEDURE

- 7.2 Analyze the extract for the constituents of interest.
- 7.3 Prepare a synthetic acid rain extraction fluid by adding the 60/40 weight percent sulfuric acid and nitric acid to distilled deionized water until the pH is 3.0 + 0.2.
- 7.4 Take the solid phase of the sample remaining after the Separation Procedure of the Extraction Procedure and weigh it. Measure an aliquot of synthetic acid rain extraction fluid equal to 20 times the weight of the solid sample. Do not allow the solid sample to dry before weighing
- 7.5 Combine the solid phase sample and acid rain fluid in the same extractor as used in the EP and begin agitation. Record the pH within 5-10 min after agitation has been started.
- 7.6 Agitate the mixture for 24 hr, maintaining the temperature at 20-40EC (68-104EF). Record the pH at the end of the 24-hr extraction period.
- 7.7 Repeat the Separation Procedure as described in Method 1310.
- 7.8 Analyze the extract for the constituents of concern.
- 7.9 Repeat steps 7.4-7.8 eight additional times.
- 7.10 If, after completing the ninth synthetic rain extraction, the concentration of any of the constituents of concern is increasing over that found in the 7th and 8th extractions, then continue extracting with synthetic acid rain until the concentration in the extract ceases to increase.
- 7.11 Report the initial and final pH of each extraction and the concentration of each listed constituent of concern in each extract.

8.0 QUALITY CONTROL

- 8.1 All quality control data should be maintained and available for easy reference or inspection.
- 8.2 Employ a minimum of one blank per sample batch to determine if contamination or any memory effects are occurring.
- 8.3 All quality control measures suggested in the referenced analytical methods should be followed.

9.0 METHOD PERFORMANCE

9.1 No data provided.

10.0 REFERENCES

10.1 None required

BC LABORATORIES, INC.

BCPREP021

STANDARD OPERATING PROCEDURES METHOD 1320 MULTIPLE EXTRACTION PROCEDURE

METHOD 1320 MULTIPLE EXTRACTION PROCEDURE
BC LABORATORIES, INC.

STANDARD OPERATING PROCEDURES METHOD 1320 MULTIPLE EXTRACTION PROCEDURE

UnControlled Copy: Issued to: Approved by: Inorganic Supervisor Approval Date: 12/02/2015 Effective Date: 12/02/2015 Printed Date: Location: Printed By:

1.0 SCOPE AND APPLICATION

1.1 The Multiple Extraction Procedure (MEP) described in this method is designed to simulate the leaching that a waste will undergo from repetitive precipitation of acid rain on an improperly designed sanitary landfill. The repetitive extractions reveal the highest concentration of each constituent that is likely to leach in a natural environment. Method 1320 is applicable to liquid, solid, and multiphase samples.

2.0 SUMMARY OF METHOD

2.1 Waste samples are extracted according to the Extraction Procedure Toxicity Test (Method 1310, Chapter 8) and analyzed for the constituents of concern listed in Chapter 7, Table 7-1: Maximum Concentration of Contaminants for Characteristic of EP Toxicity, using the 7000 and 8000 series methods. Then the solid portions of the samples that remain after application of Method 1310 are re-extracted nine times using synthetic acid rain extraction fluid. If the concentration of any constituent of concern increases from the 7th or 8th extraction to the 9thextraction, the procedure is repeated until these concentrations decrease.

3.0 INTERFERENCES

3.1 Potential interferences that may be encountered during analysis are discussed in the appropriate analytical methods.

4.0 APPARATUS AND MATERIALS

4.1 Refer to Method 1310.

5.0 REAGENTS

- 5.1 Refer to Method 1310.
- **5.2** Sulfuric acid: nitric acid, 60/40 weight percent mixture: Cautiously mix 60 g of concentrated sulfuric acid with 40 g of concentrated nitric acid.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 Refer to Method 1310.

7.0 **PROCEDURE**

- 7.1 Run the Extraction Procedure (EP) test in Method 1310
- 7.2 Analyze the extract for the constituents of interest.

BC LABORATORIES, INC.

STANDARD OPERATING PROCEDURES METHOD 1320 MULTIPLE EXTRACTION PROCEDURE

- 7.3 Prepare a synthetic acid rain extraction fluid by adding the 60/40 weight percent sulfuric acid and nitric acid to distilled deionized water until the pH is 3.0 + 0.2.
- 7.4 Take the solid phase of the sample remaining after the Separation Procedure of the Extraction Procedure and weigh it. Measure an aliquot of synthetic acid rain extraction fluid equal to 20 times the weight of the solid sample. Do not allow the solid sample to dry before weighing
- 7.5 Combine the solid phase sample and acid rain fluid in the same extractor as used in the EP and begin agitation. Record the pH within 5-10 min after agitation has been started.
- 7.6 Agitate the mixture for 24 hr, maintaining the temperature at 20-40EC (68-104EF). Record the pH at the end of the 24-hr extraction period.
- 7.7 Repeat the Separation Procedure as described in Method 1310.
- 7.8 Analyze the extract for the constituents of concern.
- 7.9 Repeat steps 7.4-7.8 eight additional times.
- 7.10 If, after completing the ninth synthetic rain extraction, the concentration of any of the constituents of concern is increasing over that found in the 7th and 8th extractions, then continue extracting with synthetic acid rain until the concentration in the extract ceases to increase.
- 7.11 Report the initial and final pH of each extraction and the concentration of each listed constituent of concern in each extract.

8.0 QUALITY CONTROL

- 8.1 All quality control data should be maintained and available for easy reference or inspection.
- 8.2 Employ a minimum of one blank per sample batch to determine if contamination or any memory effects are occurring.
- 8.3 All quality control measures suggested in the referenced analytical methods should be followed.

9.0 METHOD PERFORMANCE

9.1 No data provided.

10.0 REFERENCES

10.1 None required

[S:\WPDOC\WORDoc\LAB_DOCS\SOPS\EPA1320R0 STATUS: REVISION 0 EFFECTIVE DATE: 12/02/15 PAGE 2 of 3

BC LABORATORIES, INC.

BCPREP021

STANDARD OPERATING PROCEDURES METHOD 1320 MULTIPLE EXTRACTION PROCEDURE

METHOD 1320 MULTIPLE EXTRACTION PROCEDURE

COLLECTION OF UNTREATED METAL SHREDDER RESIDUE SAMPLES AT SIMS METAL MANAGEMENT, REDWOOD CITY

1.0 BACKGROUND AND PURPOSE

The following procedures will be implemented during the collection of untreated metal shredder residue (MSR) samples from the Sims Metal Management facility in Redwood City, California during the field-scale pilot test portion of the ongoing MSR treatability study.

Untreated MSR is separated into two streams at this facility; one stream comprises particles under 1.25 inches ("undersize") and represents approximately 70% of the total MSR throughput; the remaining 30% comprises particles between 1.25 and 4.5 inches ("oversize"). These percentages are calculated based on weight data recorded from conveyor belt scales which measure the weight conveyed through each untreated stream. The belt scales are Beltway model 100 with GSE 665 display screens. The weight percentages can vary somewhat over time depending on the composition of infeed materials.

The purpose of this SOP is to describe the procedures that will be followed to collect untreated MSR samples from both the undersize and oversize streams, and combine the two samples at a ratio which is representative of the current ratio of undersize and oversize MSR throughput. It is anticipated that eight untreated samples will be collected each day of sampling, at a frequency of once per hour. The following procedure will not be performed on treated MSR samples at Sims because treated samples will be collected from a location after the two streams have been combined.

2.0 PROCEDURES

- 1. The percentages of undersize and oversize MSR will be determined <u>for the day prior to sample</u> <u>collection</u>.
 - a. A Sims technician will observe the following weight measurements and record them on the attached Untreated MSR Conveyor Belt Scale Log, or an equivalent log:
 - i. The weight totalizer reading from the belt scale located on the undersize stream at the beginning of the day
 - ii. The weight totalizer reading from the belt scale located on the oversize stream at the beginning of the day
 - iii. The weight totalizer reading from the belt scale located on the undersize stream at the end of the day
 - iv. The weight totalizer reading from the belt scale located on the oversize stream at the end of the day
 - b. A Terraphase sampler will calculate the throughput weight for each stream as follows:
 - i. For the undersize stream, the weight totalizer reading at the beginning of the day will be subtracted from the weight totalizer reading at the end of the day to determine the weight of undersize MSR which was conveyed during the day.
 - ii. For the oversize stream, the weight totalizer reading at the beginning of the day will be subtracted from the weight totalizer reading at the end of the day to determine the weight of oversize MSR which was conveyed during the day.

- c. The sampler will calculate the weight percentages as follows:
 - i. The weights of the undersize and oversize MSR conveyed during the day will be added to determine the total weight of the MSR conveyed during the day.
 - ii. The weight of the undersize MSR will be divided by the total weight and multiplied by 100 to determine the percentage of undersize MSR.
 - iii. The weight of the oversize MSR will be divided by the total weight and multiplied by 100 to determine the percentage of oversize MSR.
- 2. It will be assumed that the percentages calculated in Step 1 will be representative of the MSR conveyed at the beginning of the day of sample collection. At the time of the first sample, undersize and oversize MSR will be collected and subsequently combined at weight percentages equal to those calculated in Step 1. For example, if the percentage of oversize MSR is determined to be 32% of the total MSR weight, with the remaining 68% comprised of undersize MSR, a bucket will be filled with these percentages of MSR by performing the following steps.
 - a. The empty bucket will be placed on a portable field scale and the scale will be zeroed.
 - b. Approximately 2 kilograms (kg) of oversize MSR will be added to the bucket. The weight of the oversize MSR will be recorded.
 - c. The weight of the oversize MSR will be multiplied by 100 and divided by 32 in order to determine the desired total weight of MSR. Undersize MSR will be added to the bucket until the desired total weight is achieved.
 - i. For example, if the oversize MSR in the bucket has a weight of 2.130 kg, the desired total weight is 2.130 kg x $100 \div 32 = 6.656$ kg.
- 3. For the subsequent hourly samples, Steps 1 and 2 will be repeated. Step 1 will be modified to include weight totalizer readings at the beginning and end of the previous *hour*. If the first sample is collected at 8:00 am, and prepared using the weight percentage calculated for the previous day, the 9:00 am sample will be prepared using the weight percentage calculated for the period of 8:00 am through 9:00 am.
- 4. After the desired weight percentage is achieved for a given sample, the sampler will proceed with remaining sampling activities such as coning and quartering to produce two replicate samples with a mass of at least 400 grams each, and removing extraneous elemental metal objects.

Untreated MSR Conveyor Belt Scale Log

Date:	Day of the We	ek:	Logged by:											
Project Na	me: ISRI MSR Treatability Stud	dy	Project Num	0102.001.001										
Site Locatio	ite Location: Sims Metal Management, 699 Seaport Blvd., Redwood City, CA													
Weather C	onditions:													
Personnel	present on site:													
Time		Notes												
	One day prior to sample co	llection: belt	scale weight	t totalize	r readings									
		Undersiz	e (tons)		Oversize (tons)									
	Beginning of day:													
	End of day:													
	Day of sample collection: b	elt scale wei	ght totalizer	readings										
		Undersiz	e (tons)		Oversize (tons)									
	Time 1													
	Time 2													
	Time 3													
	Time 4													
	Time 5													
	Time 6													
	Time 7													
	Time 8													
	1													

Page _____ of _____

APPENDIX F FIELD CALCULATIONS FOR COLLECTION OF UNTREATED METAL SHREDDER RESIDUE SAMPLES, SIMS FACILITY

Field Calculations for Collection of Untreated Metal Shredder Residue Samples

Sims Facility

Pilot Study

Metal Shredder Residue Treatability Study

			Belt scales							c	amplo buck				
			Unde	ersize	Ove	rsize				3					
Date	Day ID	Sample time	Reading time	Totalizer (tons)	Change since last reading (tons)	Totalizer (tons)	Change since last reading (tons)	Total since last reading (tons)	% Oversize	Desired oversize sample mass (g)	Actual oversize sample mass (g)	Desired total sample mass (g)	Actual total sample mass (g)	Confirm % Oversize	Comments
		1415	(yesterday)	259		74.21		333.21	22.3%	1,227	1,214	5,444	5,456	22.3%	
		1515	1500	27.1	27.1	5.5	5.5	32.6	16.9%	845	854	5,053	5,054	16.9%	
		1615	1600	54.8	27.7	12	6.5	34.2	19.0%	950	913	4,805	4,804	19.0%	
		1715	1700	83.8	29	19.3	7.3	36.3	20.1%	1,005	1,004	4,995	4,994	20.1%	
7/21/2016	Day 1H	1900	1800	113.2	29.4	25.2	5.9	35.3	16.7%	835	817	4,892	4,890	16.7%	Sample not collected at 1815 due to downtime; no reading at 1900 due to downtime
		2000	2000	130.4	17.2	31.5	6.3	23.5	26.8%	1,340	1,327	4,951	4,952	26.8%	
		2120	2000	130.4		31.5			26.8%	1,340	1,280	4,776	4,778	26.8%	Sample not collected at 2100 due to downtime; no reading at 2100 due to downtime
		2220	2200	157.8	27.4	43.5	12	39.4	30.5%	1,525	1,534	5,030	5,028	30.5%	
	Day 1L	1530	(yesterday)	178.4		50.8		229.2	22.2%	997	1,002	4,514	4,514	22.2%	
		1630	1600	27.1	27.1	5	5	32.1	15.6%	701	704	4,513	4,513	15.6%	
		1730	1700	69.2	42.1	12.6	7.6	49.7	15.3%	688	688	4,497	4,497	15.3%	
7/22/2016		1830	1800	115.3	46.1	21	8.4	54.5	15.4%	694	716	4,649	4,649	15.4%	
772272010		1930	1900	155.7	40.4	31.6	10.6	51	20.8%	935	935	4,495	4,495	20.8%	
		2030	2000	193.7	38	43.8	12.2	50.2	24.3%	1,094	1,078	4,436	4,436	24.3%	
		2130	2100	235	41.3	55.8	12	53.3	22.5%	1,013	1,006	4,471	4,471	22.5%	
		2230	2200	267.8	32.8	65.7	9.9	42.7	23.2%	1,043	1,034	4,457	4,457	23.2%	
		1420	(yesterday)	426.7		129.7		556.4	23.3%	1,049	1,044	4,481	4,482	23.3%	
		1520	1500	21.7	21.7	6.5	6.5	28.2	23.0%	1,268	1,260	5,478	5,478	23.0%	
		1620	1600	45.1	23.4	13.1	6.6	30	22.0%	1,210	1,201	5,459	5,458	22.0%	
7/28/2016	Day 2H	1720	1700	65	19.9	20.5	7.4	27.3	27.1%	1,491	1,484	5,476	5,476	27.1%	
, , -,	- /	1820	1800	88.7	23.7	29	8.5	32.2	26.4%	1,452	1,450	5,492	5,492	26.4%	
		1920	1900	112.5	23.8	38	9	32.8	27.4%	1,509	1,512	5,518	5,518	27.4%	
		2020	2000	134.1	21.6	47.1	9.1	30.7	29.6%	1,482	1,462	4,939	4,938	29.6%	
		2120	2100	151	16.9	54.6	7.5	24.4	30.7%	1,537	1,524	4,964	4,964	30.7%	

Field Calculations for Collection of Untreated Metal Shredder Residue Samples

Sims Facility

Pilot Study

Metal Shredder Residue Treatability Study

	Sample bucket					Belt scales										
		et		2				rsize	Ove	ersize	Und					
Comments	Confirm % Oversize	Actual total sample mass (g)	Desired total sample mass (g)	Actual oversize sample mass (g)	Desired oversize sample mass (g)	% Oversize	Total since last reading (tons)	Change since last reading (tons)	Totalizer (tons)	Change since last reading (tons)	Totalizer (tons)	Reading time	Sample time	Day ID	Date	
	27.5% 23.2% 20.3% 20.9% 22.1%	4,466 4,526 4,512 4,498 4,994	4,465 4,526 4,512 4,498 4,995	1,228 1,050 916 940 1,104	1,237 1,044 914 942 1,103	27.5% 23.2% 20.3% 20.9% 22.1%	232.4 112.9 39.4 49.2 52.6	26.2 8 10.3 11.6	63.9 26.2 34.2 44.5 56.1	86.7 31.4 38.9 41	168.5 86.7 118.1 157 198	(yesterday) 1500 1600 1700 1800	1400 1500 1600 1700 1800	Day 2L	7/29/2016	
	23.2% 24.3% 25.3%	5,026 5,021 4,988	5,026 5,021 4,988	1,166 1,220 1,262	1,160 1,217 1,265	23.2% 24.3% 25.3%	50 53.4 49.4	11.6 13 12.5	67.7 80.7 93.2	38.4 40.4 36.9	236.4 276.8 313.7	1900 2000 2100	1900 2000 2100			
	25.6% 32.4% 30.4% 30.2% 38.0% 41.1% 37.5% 36.1%	4,930 4,974 5,000 4,993 4,958 5,006 4,982 4,974	4,930 4,975 5,000 4,993 4,958 5,007 4,981 4,975	1,262 1,612 1,520 1,508 1,884 2,058 1,868 1,796	1,281 1,618 1,520 1,508 1,900 2,057 1,875 1,806	25.6% 32.4% 30.4% 30.2% 38.0% 41.1% 37.5% 36.1%	418.5 30.9 25 32.5 22.9 20.9 18.4 21.6	10 7.6 9.8 8.7 8.6 6.9 7.8	107.2 10 17.6 27.4 36.1 44.7 51.6 59.4	20.9 17.4 22.7 14.2 12.3 11.5 13.8	311.3 20.9 38.3 61 75.2 87.5 99 112.8	(yesterday) 1705 1755 1845 1935 2025 2115 2205	1705 1755 1845 1935 2025 2115 2205	Day 3H	8/2/2016	
no reading at 1600 due to downtime	34.5% 22.6% 43.0% 25.1% 27.0% 35.7% 26.1% 27.9%	4,638 5,018 4,992 4,948 5,016 5,004 5,050 4,968	4,638 5,018 4,991 4,948 5,015 5,003 5,050 4,968	1,600 1,134 2,146 1,242 1,354 1,786 1,318 1,386	1,726 1,131 2,150 1,257 1,351 1,785 1,307 1,396	34.5% 22.6% 43.0% 25.1% 27.0% 35.7% 26.1% 27.9%	175.8 16.8 52.1 36.2 35.9 40.9 34.8 63.4	3.8 22.4 9.1 9.7 14.6 9.1 17.7	60.7 3.8 26.2 35.3 45 59.6 68.7 86.4	13 29.7 27.1 26.2 26.3 25.7 45.7	115.1 13 42.7 69.8 96 122.3 148 193.7	(yesterday) 1200 1300 1400 1500 1700 1800 1900	1100 1200 1300 1400 1500 1700 1800 1900	Day 3L	8/3/2016	

Field Calculations for Collection of Untreated Metal Shredder Residue Samples

Sims Facility

Pilot Study

Metal Shredder Residue Treatability Study

			Belt scales								amplo buck				
				Unde	ersize	Ove	rsize			Sample bucket					
Date	Day ID	Sample time	Reading time	Totalizer (tons)	Change since last reading (tons)	Totalizer (tons)	Change since last reading (tons)	Total since last reading (tons)	% Oversize	Desired oversize sample mass (g)	Actual oversize sample mass (g)	Desired total sample mass (g)	Actual total sample mass (g)	Confirm % Oversize	Comments
		1330	(yesterday)	406		130		536	24.3%	1,213	1,226	5,045	5,045	24.3%	
		1430	1430	25.4	25.4	8.6	8.6	34	25.3%	1,265	1,265	5,000	5,000	25.3%	
		1530	1530	41.5	16.1	16	7.4	23.5	31.5%	1,417	1,400	4,444	4,442	31.5%	
1/24/2017	Day 4H	1630	1630	62.3	20.8	22.1	6.1	26.9	22.7%	1,020	1,022	4,502	4,503	22.7%	
1/24/2017	Duy HI	1730	1730	80	17.7	30.6	8.5	26.2	32.4%	1,460	1,440	4,444	4,444	32.4%	
		1830	1830	103.4	23.4	38.8	8.2	31.6	25.9%	1,168	1,178	4,548	4,549	25.9%	
		1930	1930	123.6	20.2	46.6	7.8	28	27.9%	1,254	1,259	4,513	4,515	27.9%	
		2030	2030	141	17.4	55.2	8.6	26	33.1%	1,488	1,488	4,495	4,495	33.1%	
	Day 1M	1100	(yesterday)	141		55.2		196.2	28.1%	1,266	1,270	4,520	4,520	28.1%	
		1200	1200	24	24	7	7	31	22.6%	1,016	1,025	4,535	4,535	22.6%	
		1300	1300	46	22	16	9	31	29.0%	1,306	1,306	4,503	4,503	29.0%	
1/25/2017		1400	1400	81.1	35.1	24.4	8.4	43.5	19.3%	869	874	4,528	4,528	19.3%	
, -, -		1500	1500	112.5	31.4	32	7.6	39	19.5%	877	880	4,513	4,514	19.5%	
		1600	1600	140.2	27.7	41	9	36.7	24.5%	1,104	1,100	4,490	4,490	24.5%	
		1700	1700	167.1	26.9	51.6	10.6	37.5	28.3%	1,272	1,272	4,495	4,494	28.3%	
		1800	1800	187.2	20.1	60.2	8.6	28.7	30.0%	1,348	1,350	4,500	4,500	30.0%	
		1100	(yesterday)	187.2		60.2		247.4	24.3%	1,095	1,074	4,420	4,418	24.3%	
		1200	1200	52.8	52.8	18.9	18.9	71.7	26.4%	1,186	1,186	4,492	4,492	26.4%	
		1300	1300	78.8	26	25.8	6.9	32.9	21.0%	944	955	4,548	4,550	21.0%	
1/26/2017	Day 4L	1400	1400	104	25.2	33	7.2	32.4	22.2%	1,000	1,003	4,518	4,519	22.2%	
	,	1500	1500	135.4	31.4	41.5	8.5	39.9	21.3%	959	975	4,577	4,575	21.3%	
		1600	1600	159.3	23.9	49.4	7.9	31.8	24.8%	1,118	1,122	4,524	4,524	24.8%	
		1700	1700	190	30.7	60	10.6	41.3	25.7%	1,155	1,155	4,494	4,492	25.7%	
		1800	1800	215.3	25.3	69.4	9.4	34.7	27.1%	1,219	1,216	4,487	4,487	27.1%	