RISK ASSESSMENT METHODS AND ADDRESSING CUMULATIVE IMPACTS

SB 673 Cumulative Impacts Symposium

March 27, 2017

Risk Assessment Methods

Facility Based

- Purpose: Predict future impacts from specific equipment
- Example: Permitting

Site Based

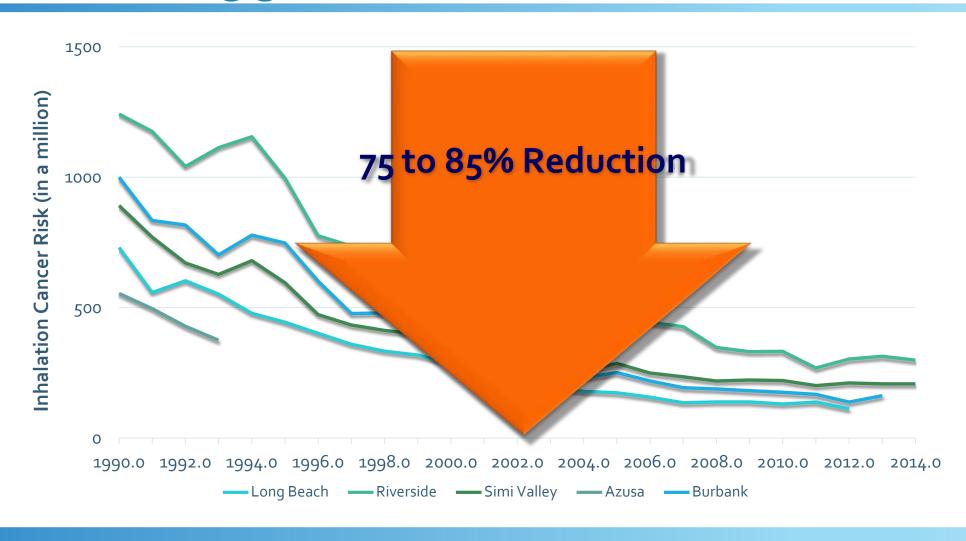
- Purpose: Evaluate how historical impacts to specific site could affect future
- Example: Site Clean-up

Receptor Based

- Purpose: Evaluate total impact to a receptor
- Example: CalEnviroScreen, EJScreen, NATA, MATES, etc.*

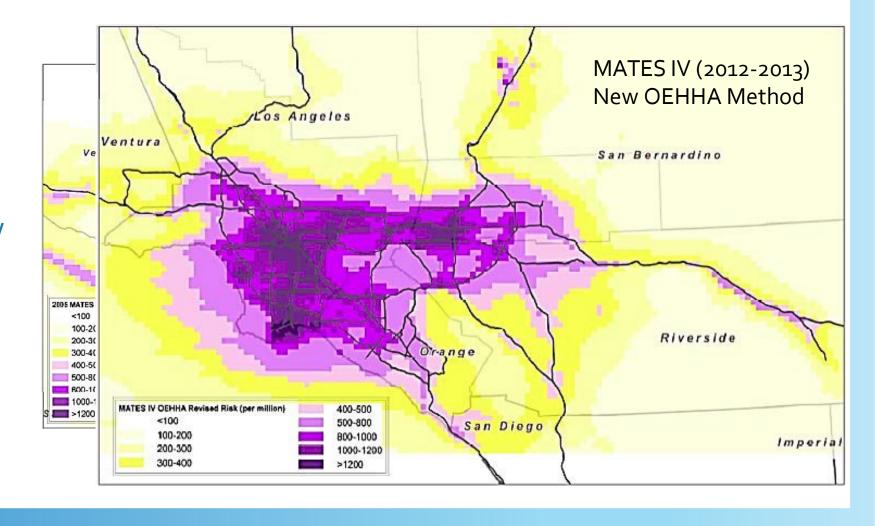
Regulatory Health Risk Assessments

- > Same basic approach across agencies, but many underlying variables differ
 - > Pollutant Toxicity
 - > Toxicity criteria available from OEHHA, EPA, literature, etc.
 - Dose
 - Receptor exposures scenarios
 - Childhood sensitivity multipliers
 - > Modeled concentrations vs. actual measurement
 - Many others...


Air Quality Health Risk Assessments

- > Facility-based HRAs are required by regulation when:
 - ➤ New equipment is permitted New Source Review
 - ➤ Entire facility is evaluated under AB 2588 Air Toxics Hot Spots Act
 - > OEHHA Guidance required by Health and Safety Code
 - > Projects are approved under CEQA
 - Cumulative impacts assessed
 - Baseline conditions subtracted out of project impact
 - > Many schools required to conduct receptor-based air quality HRA

SCAQMD History of Addressing Cumulative Impacts


- Air Quality Management Plan (1991, 1994, 1997, 1999, 2003, 2007, 2012, 2017)
- Environmental Justice Initiatives (1997)
- Cumulative Impacts White Paper (2003)
 - Cumulative Impacts Working Group page
- > AirToxics Control Plans (2000, 2004), Clean Communities Plan (2010)
- > Multiple Air Toxics Exposure Study (1987, 2000, 2008, 2015)

Trends in Air Toxic CancerRisk Since 1990 (Excludes Diesel PM)

SCAQMD Actions to Address Cumulative Impacts – MATES Study

- Comprehensive monitoring and modeling assessment of all toxic air pollution sources in SCAQMD
- Study has identified new sources of pollution

SCAQMD Actions to Address Cumulative Impacts – Air Monitoring

- Air Quality Monitoring
 - Provides insight into total air pollution impact at a location
 - > New monitoring approaches emerging
 - ➤ Lower cost instruments <u>AQ-SPEC Homepage</u>
 - Remote sensing technologies
- > Example: City of Paramount
 - Multiple sources of hexavalent chromium found through monitoring
 - Coordinated approach
 - > Within SCAQMD enforcement, legal, monitoring, etc.
 - Outside agencies
 - > Public

SCAQMD Actions to Address Cumulative Impacts - Regulations

- Comprehensive rule strategy to address most significant sources of emissions
- Provide extra protection to sensitive populations
 - > Residences
 - > Schools

Examples of Source-Specific Rules

Asbestos Remova

Perchloroethylene

Dry Cleaning

Metal Melting and Heating

Gasoline Dispensing

Diesel Engines

Lead Facilities

Metal Plating

Cooling Towers

SCAQMD Actions to Address Cumulative Impacts – Funding

- SCAQMD administers federal, state, and local funding to help businesses implement lower emission technologies
 - ➤ Carl Moyer Program
 - ➤ Prop. 1B
 - > Rule 2202 Air Quality Investment Program
 - > "SOON" Program for Off-Road Vehicles
 - > Clean Fuels Fund
 - ➤ Low Emissions School Bus Incentive Program
- > Funding level varies, but typically ~\$100+ million/year

Conclusion

- Many ways to assess cumulative risks
 - Some technical challenges
- > Primary focus of SCAQMD is to reduce cumulative risk
 - Regulations + Incentives
- Working with partners critical