
Evaluation of Water Quality Impacts on Coho Salmon

The second second

Edward P. Kolodziej, Zhenyu Tian, Katherine Peter, Nina Zhao, Ximin Hu, Mike Dodd, Jen McIntyre + lots of collaboration with U. Toronto, WSU-Puyallup, NOAA-NMFS, U.S. Fish and Wildlife

Acute Toxicity: "Urban Runoff Mortality Syndrome"

Recurrent Die-Offs of Adult Coho Salmon Returning to Spawn in Puget Sound Lowland Urban Streams

Nathaniel L. Scholz¹*, Mark S. Myers¹, Sarah G. McCarthy², Jana S. Labenia¹, Jenifer K. McIntyre¹, Gina M. Ylitalo¹, Linda D. Rhodes¹, Cathy A. Laetz¹, Carla M. Stehr¹, Barbara L. French¹, Bill McMillan³, Dean Wilson², Laura Reed⁴, Katherine D. Lynch⁴, Steve Damm⁵, Jay W. Davis⁵, Tracy K. Collier¹

Coho pre-spawn mortality (PSM) is widespread and recurrent in urban streams

Longfellow Creek 2003

Longfellow Creek 2005

Des Moines Creek 2004

Coho PSM rates measured in Seattle-area urban streams have ranged from 40 – 90% of the total run (2002-2009) -Urban stormwater runoff kills coho salmon in 2-24 hrs:

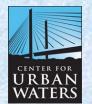
"<u>Urban Runoff Mortality Syndrome</u>", or URMS

-URMS cause unknown: not pathogens, metals, pesticides, PAHs, ammonia, basic water quality parameters, etc.

-Coho more sensitive, no mortality in cutthroat trout or chum salmon

Scholz et al. 2011

CUW Approach: High Resolution Mass Spectrometry Which chemicals and sources are most important?



High Resolution Mass Spectrometry (HRMS):

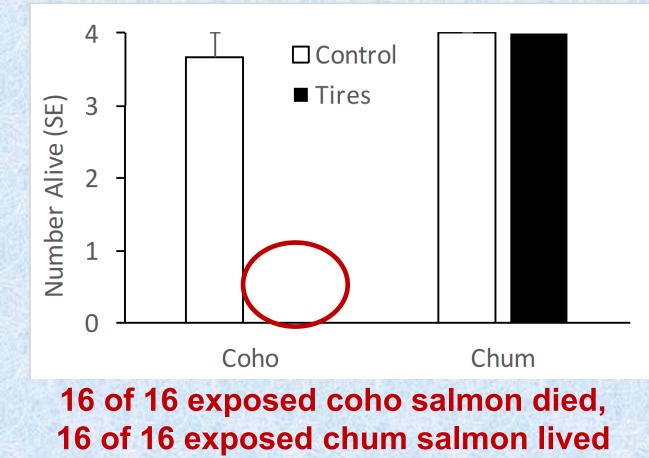
-Identify novel compounds, holistic screening

-Detect it "all", then figure out what's there.

-More unbiased, fewer assumptions about what is going on

Coupled together HRMS and toxicology exposures in an "Effects Directed Analysis" framework

1) Ecotoxicology Studies



Tire Rubber Leachate

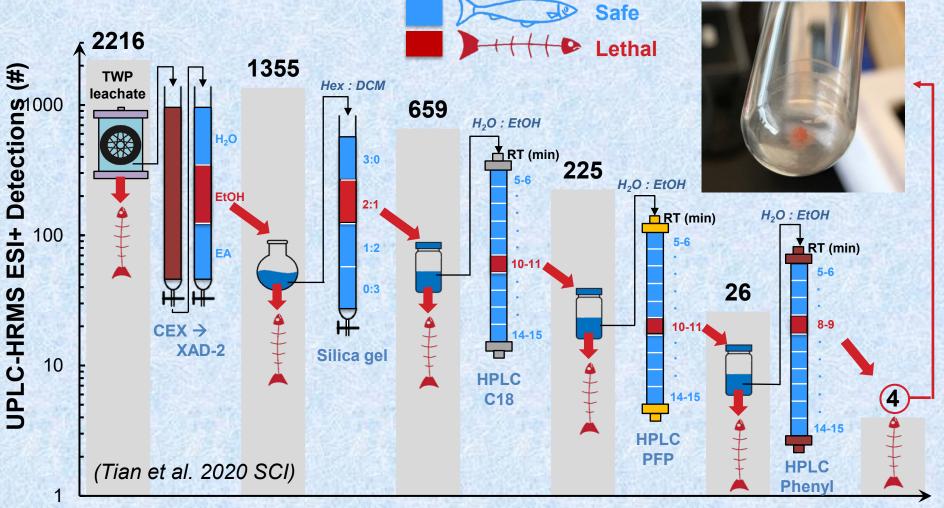
Jen McIntyre (WSU-Puyallup) and NOAA studies

1) Tire Leachate is Lethally Toxic to Adult Coho ~320 mg/L tire rubber (HRMS: more like 100 mg/L) Leaching: 24 h at 8-10 °C Exposure: 24 h Repeated 4X (64 fish total)

Jen McIntyre (WSU-Puyallup) and NOAA studies

2) TIE/EDA Identify Toxicant(s) in Tire Rubbers

Leach tire particles into water, then fractionate & expose juvenile coho



5 juvenile coho in 15-30 L, 24 h

2) We Isolated a Single Toxic Fraction..

+Control: TWP leachate, 27 exposures, 135 coho, 98.5% mortality -Control: Solvent and Exposure water blanks, 125 coho, 0% mortality

Toxicant Fractionation Scheme

2) Final Toxic Fraction: What Was C₁₈H₂₂N₂O₂??

Lat

Ru

C₁₈H₂₂N₂O₂ NOT found in literature/databases for environment or tire rubber chemicals "True Unknown"

-Assumed transformation product, held C and N constant.. Looked for matches. $\rightarrow C_{18}H_{24}N_2$ ("6PPD") in EPA Crumb Rubber report

TABLE I

ittimer et al., 1983 Jubber. Chem. Technol.	COMPOSITIONS OF OZONE-HPPD REACTION PRODUCTS			
	Measured mass ^e	Atomic composition	Calculated mass ^b	
C ₁₈ H ₂₂ N ₂ O ₂ "dinitrone"	184.0997 ^c 198.0793 ^c 214.0742 ^c 268.1579 ^c 268.1944 ^c	$\begin{array}{c} C_{12}H_{12}N_2\\ C_{12}H_{10}N_2O\\ C_{12}H_{10}N_2O_2\\ C_{12}H_{10}N_2O_2\\ C_{17}H_{20}N_2O\\ C_{18}H_{24}N_2 \end{array}$	$184.1000\\198.0793\\214.0742\\268.1576\\268.1939$	
	211.1235 282.1734 ^c 225.1023 296.1889 ^c 298.1688 ^c	$C_{14}H_{15}N_2 \\C_{18}H_{22}N_2O \\C_{14}H_{13}N_2O \\C_{19}H_{24}N_2O \\C_{18}H_{22}N_2O_2 \\C_{18}H_{22}N_2O_2$	211.1235 282.1732 225.1028 296.1888 298.1681	
DINITRONE (XXIII) MW 298	534.3716 ^c 477.3011 546.3356 ^c 503.2819 489.2654	C30H40N4 C32H37N4 C36H42N4O C33H35N4O C32H33N4O	534.3722 477.3018 546.3358 503.2811 489.2654	

3) 6PPD Ozonation

-Used industrial grade (96%) 6PPD, protocol built from Lattimer et al. 1983, worked with Mike Dodd (UW CEE)

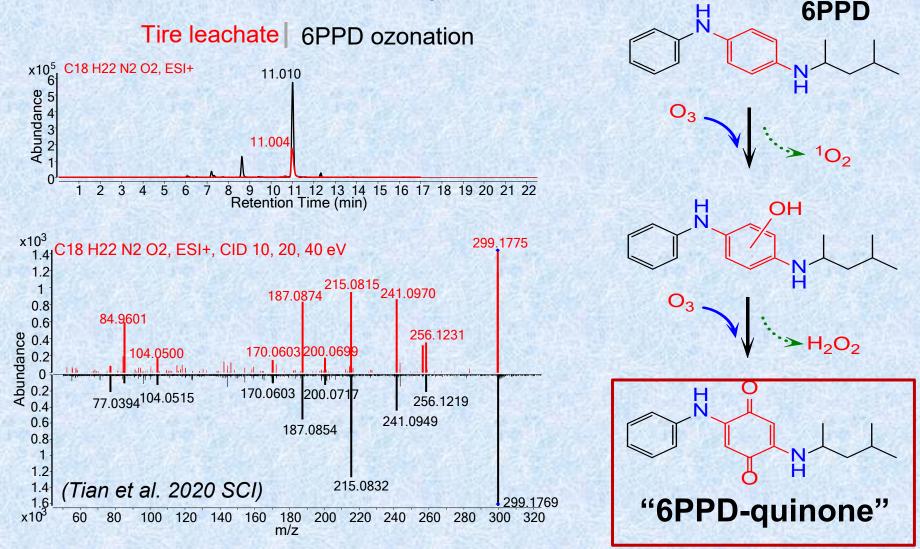
6PPD

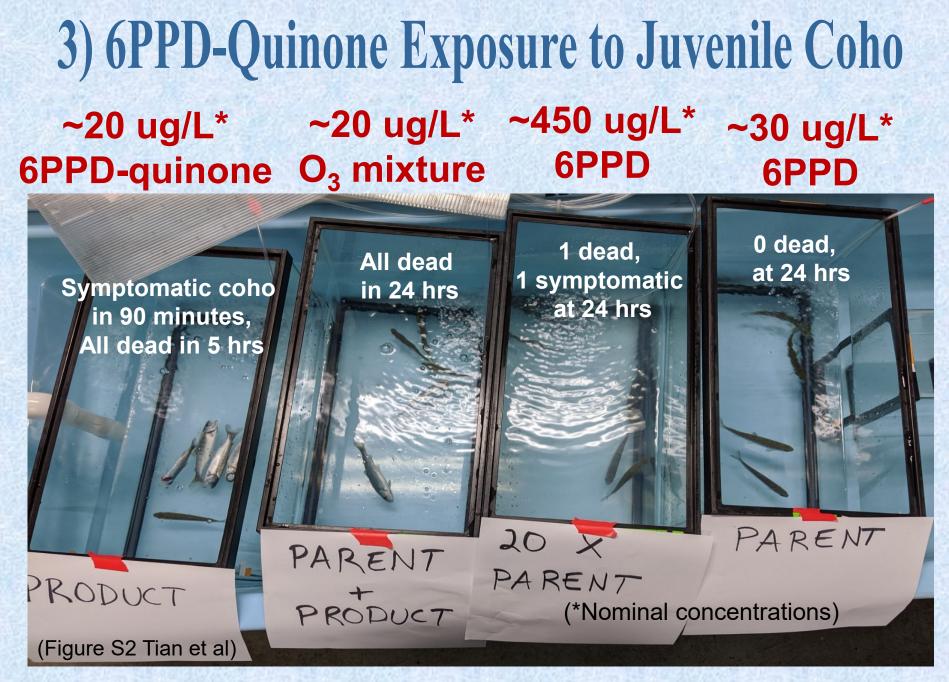
500 mL/min, 20 min, 6.9% (v/v) O_{3(g)}

Ozonation Products form..

6ppd Rubber Chemical **6ppd** Ex-factory Price Rubber Chemicals Antioxidant **6p**...

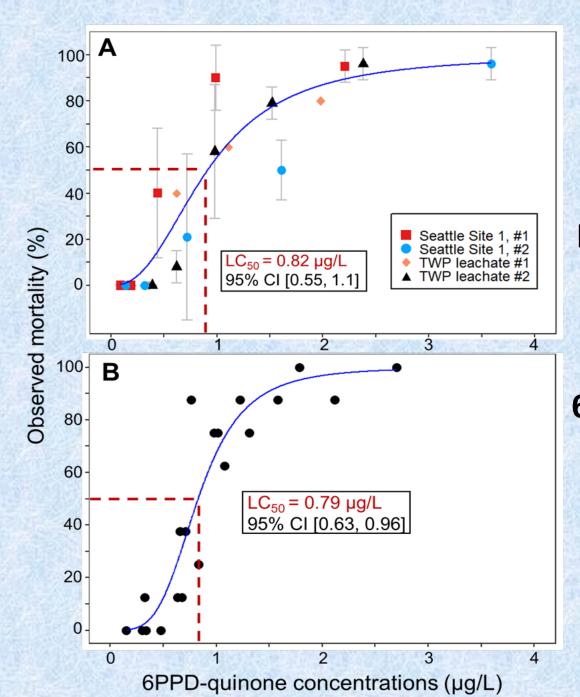
(Tian et al. 2020 SCI)


US \$2450-\$2900 / Ton 1 Ton (Min. Order)


2

47

3) Purified C₁₈H₂₂N₂O₂ from TWP Leachate and Ozonation -Andre Simpson, U. Toronto NMR Analysis: Identical structures, O₃ synthesized ~98% pure



CENTER FOR URBAN WATERS

Products can be more toxic than parent chemicals...

6PPD-Quinone Controlled Exposures

Dilutions of multilane roadway runoff and TWP leachate N = 365 coho, error bars reflect 3X replicates of 8 fish

Controlled Exposures: 6PPD-quinone ~98% purity Each exposure: N = 80 coho, 2 replicates (160 fish total)

> 6PPD-quinone: "Primary causal toxicant"

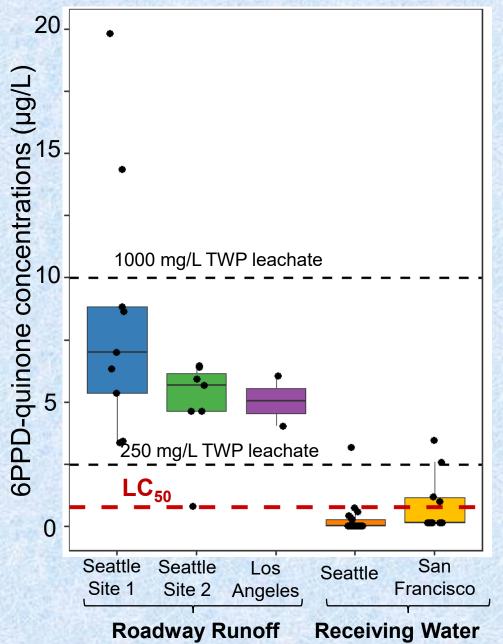
> > (Tian et al. 2020 SCI)

Environmental Relevance

6PPD-quinone formation is expected for any location containing tire rubber residuals, including recycled materials

Hazardous Substances Series

OSPAR Commission _____ 2005 (2006 Update)


4-(dimethylbutylamino)diphenylamine (6PPD)

it might evaporate into the atmosphere. It might also (anew) be bound to the rubber matrix. Since 6PPD is a reactive anti-ozonant and antioxidant, 6PPD which reaches the surface of rubber products will be rapidly degraded by ozone, or other photooxidants (*Lattimer et al. 1982, Layer*)

- in general - are not extractable with water or organic solvents. The predominant sink of 6PPD is the reaction with ozone, which is the chemical base of the anti-cracking effect of 6PPD (*Lorenz et al. 1985,*

4) Environmental Relevance

 Detected in 18/18 roadway runoff, all above LC₅₀

 Detected in 6/7 creeks sampled during URMS events, concentrations near or above LC₅₀

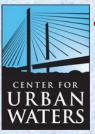
 Detected in Seattle, Los Angeles, San Francisco samples

Field Mortality

October 21, 2017 Lower Duwamish R. (Puget Soundkeeper)

6PPDQ Lab Exposure

February 17, 2020 WSU-Puyallup (Kolodziej video)


Observations

-Tire rubber residuals are sources of complex mixtures of emerging organic contaminants and water quality impairment. Coho salmon are highly sensitive to these mixtures.

-6PPD: Toxic + designed reactive. Surprised? We should not be surprised when products of toxic compounds also are toxic.

-For California: Coho salmon are telling us to pay special attention when busy roads intersect with sensitive habitats/species.

-Habitat restoration includes chemical habitat (water quality) in addition to physical habitat. Sensitive species restoration will likely teach us new things about chemical habitat quality.

The big picture: How can fish and people coexist? What will we need to change in our lives and products to reduce our toxicity? Can we make "salmon safe" tires?

Acknowledgements and Thanks To: The CUW Research Team!

Kathy Peter

Alex, Allan, Zhenyu, Rachel H., Rui, Ting, Nina, Melissa, Rachel L., and Kathy

Acknowledgements and Thanks To:

- Collaborators, Funders, & Citizen Science Teams
 - NOAA NWFSC Nat Scholz, James Cameron, Jessica Lundin (and many others)
 - WSU-Puyallup Stormwater Center Jen McIntyre, John Stark (and many others)
 - Andre Simpson et al. (U. Toronto)
 - Suquamish and Puyallup Tribes
 - US Fish & Wildlife Service Jay Davis, Ken King
 - WSDOT Alex Nguyen, Jana Crawford
 - FHWA Cindy Callahan
 - National Science Foundation
 - EPA-National Estuary Program
 - WA Department of Ecology
 - Miller Walker Community Salmon Investigation, Puget Soundkeeper, Thornton Creek Alliance

Aailent

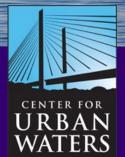
Emcon 2021 Conference

7th International Conference on Emerging Contaminants Virtual Event, September 13-14, 2021

Will have lots of content on roadway runoff, microplastics, PFAS, other emerging contaminants, ecotoxicology Host E.P.K., email koloj@uw.edu

https://cvent.me/7kvWG9

Questions?


koloj@uw.edu

Center for Urban Waters, Tacoma, WA

COLLEGE OF ENGINEERING UNIVERSITY of WASHINGTON

A SACARE CA

UNIVERSITY of WASHINGTON TACOMA

